I think th<span>e upward acceleration of the rocket during the burn phase is 7.</span>8 m/s2
Use. Weight = (mass)x(accel of gravity).
It'll be somewhere around approx roughly about in the neighborhood of 9.706667m/sec^2 .
The amount of energy that a wave may transfer to a unit area of a surface each second is measured as the wave's intensity. Watts per square meter is a unit used to express intensity. A sound wave's frequency is equal to its rate of vibration, and its intensity is determined by its amplitude.
<h3>What is the intensity of sound waves affect the frequency?</h3>
The energy of a vibration is quantified in decibels as intensity or loudness (dB). A sound has a high intensity if it is loud.
Therefore, perceive noise as louder the higher the frequency, although frequency does not indicate how loud a sound is.
Learn more about sound waves here:
brainly.com/question/1585667
#SPJ1
Answer: "For a projectile with no air resistance, at the peak of its path, it's velocity is equal to zero"
Explanation:
Suppose that you throw an object up. The initial vertical velocity will be positive, and the acceleration (the gravitational acceleration) will point downwards, meaning that it opposes to the initial direction of the velocity, and that decreases the velocity as the time goes by.
There will be a point where the velocity ( that was positive until now, so until now the height of the object was increasing), is equal to zero, this means that at this moment the object stops moving, and after, because we still have negative acceleration, the velocity will start become negative, and the object will fall down.
Then that point where the velocity was zero is the peak of its path, then we can conclude that:
"For a projectile with no air resistance, at the peak of its path, it's velocity is equal to zero"
The rocket engine works on the basic principle proposed by Newton which is Newton’s Third Law.