Answer:
11.6532 x 10⁻¹¹ J or 7.3 MeV is given off
Explanation:
Mass of an alpha particle = 4.0026u, ∴ mass of three = 12.0078u
Find the difference in mass.
Mass of three alpha - Mass of Carbon nucleus
12.0078u - 12u = 0.0078u
Since 1u = 1.66 x 10⁻²⁷ kg
Therefore, 0.0078u = 1.2948 x 10⁻²⁷
Now that we know Mass(m) = 1.2948 x 10⁻²⁷ and Speed (c) 3 x 10⁸ m²s⁻²
Formular for Energy ==> E₀ = mc²
E = (1.2948 x 10⁻²⁷) (3 x 10⁸ m²s⁻²)²
E = (1.2948 x 10⁻²⁷) (9 x 10¹⁶) J
E = 11.6532 x 10⁻¹¹ J
Or, if you need your energy in MeV
1 MeV = 1.60x10⁻¹³ J
Just do the conversion by dividing 11.6532 x 10⁻¹¹ J by 1.60x10⁻¹³ J
It will give you 7.3 MeV
Answer:
See explanations below
Explanation:
According to Newtons second law of motion
F = mass * acceleration
F = ma
If mass of an object is decreased to half, then m₂ = 1/2 m
If acting force is reduced by quarter, then F₂ = 3/4 F
F₂ = m₂a₂
3/4F = 1/2m a₂
Divide both expressions
(3/4F)/F = (1/2m)a₂/ma
3/4 = 1/2a₂/a
3/4 = a₂/2a
4a₂ = 6a
2a₂ = 3a
a₂ = 3/2 a
Hence the acceleration of its motion will be one and a half of its original acceleration.
Answer:
increasing the temperature of the object
To solve this problem, let us consider that the Earth is the
origin, the initial reference point. Therefore the speed of rocket plus the
missile would be 0.8 C
Now after the rocket had moved away from Earth, it fired a missile
at a speed of 0.7 C. Now the reference made to this is relative to the rocket.
We have established that our initial reference point is the Earth, therefore
the real speed of the missile with reference to Earth is:
Speed of missile relative to Earth = 0.8 C + 0.7 C
Speed of missile relative to Earth = 1.5 C
Answer is:
<span>A</span>
Answer:
106.24 kJ.
Explanation:
Given that,
Mass of sample of sand, m = 8 kg
Specific heat of sand, c = 664 J/kg-°C
The temperature changes from 20° C to 40° C. We need to find the change in thermal energy. It is given by :

So, the change in thermal energy is 106.24 kJ.