The answer is 3.39 mol.
<span>Avogadro's number is the number of molecules in 1 mol of substance.
</span><span>6.02 × 10²³ molecules per 1 mol.
</span>2.04 × 10²⁴<span> molecules per x.
</span>6.02 × 10²³ molecules : 1 mol = 2.04 × 10²⁴ molecules : x
x = 2.04 × 10²⁴ molecules * 1 mol : 6.02 × 10²³ molecules
x = 2.04/ 6.02 × 10²⁴⁻²³ mol
x = 0.339 × 10 mol
<span>x = 3.39 mol
</span>
A is the answer I know bc I take biology
Explanation:
Power obtained by harnessing the energy of the suns rays
solution:
The quoted atomic mass on the Periodic Table is the WEIGHTED average of the individual isotopic masses. The higher the isotopic percentage, the MORE that isotope will contribute to the isotopic mass. For this reason, most masses that are quoted on the Table are non-integral.
By way of example we could look to the hydrogen atom. The VAST majority of hydrogen atoms (in this universe) are the protium isotope. i.e. 1H, whose nuclei contain JUST the defining proton. There is a smaller percentage (>1%) of hydrogen atoms WITH one NEUTRON in their nuclei to give the deuterium isotope. i.e. 2H, and because this is relatively cheap, and easily incorporated into a molecule, deuterium labelling is routinely used in analysis.
And there is even a smaller percentage of hydrogen atoms with TWO NEUTRONS in their nuclei, to give the tritium isotope. i.e. 3H. The weighted average of the isotopic percentages gives 
Answer:
0.14 M
Explanation:
To determinate the concentration of a new solution, we can use the equation below:
C1xV1 = C2xV2
Where C is the concentration, and V the volume, 1 represents the initial solution, and 2 the final one. So, first, the initial concentration is 1.50 M, the initial volume is 55.0 mL and the final volume is 278 mL
1.50x55.0 = C2x278
C2 = 0.30 M
The portion of 139 mL will be the same concentration because it wasn't diluted or evaporated. The final volume will be the volume of the initial solution plus the volume of water added, V2 = 139 + 155 = 294 mL
Then,
0.30x139 = C2x294
C2 = 0.14 M