Correction: The temperature change is from 20 °C to 30 °C.
Answer:
Cp = 1.0032 J.g⁻¹.°C⁻¹
Solution:
The equation used for this problem is as follow,
Q = m Cp ΔT ----- (1)
Where;
Q = Heat = 5016 J
m = mass = 500 g
Cp = Specific Heat Capacity = ??
ΔT = Change in Temperature = 30 °C - 20 °C = 10 °C
Solving eq. 1 for Cp,
Cp = Q / m ΔT
Putting values,
Cp = 5016 J / (500 g × 10 °C)
Cp = 1.0032 J.g⁻¹.°C⁻¹
Answer:
The final pressure of a gas is inversely proportional to the volume change and directly proportional to temperature
Explanation:
Given

Required
Interpret

Multiply both sides by T1


Divide both sides by V1


This can be rewritten as:

In the above expression; k is a constant of proportionality.
So, the equation can be written as variation as follows:

To interpret:
<em>P varies directly to T (the numerator) and inversely to V (the denominator).</em>
<em></em>
The reducing agent is donating electrons and therefore becoming oxidised itself. In this scenario elemental zinc (Zn) is in a reduced state and is oxidised to become Zn2+, in doing so it donates electrons to Fe2+, thereby reducing it to elemental iron (Fe).
The elemental Zinc in solid state is therefore the reducing agent as it reduces Fe2+ to Fe(s).
Answer:
λ = 2.38 × 10^(-7) m
Explanation:
We are given the work function for palladium as 503.7 kJ/mol.
Now let's convert this to KJ/electron.
We know from avogadro's number that;
1 mole of electron = 6.022 × 10^(23) electrons
Thus,
503.7 kJ/mol = 503.7 × 1/(6.022 × 10^(23)) = 8.364 × 10^(-22) KJ/electron = 8.364 × 10^(-19) J/electron
Formula for energy of a photon is;
E = hv
Where;
h is Planck's constant = 6.626 × 10^(-34) J.s
v is velocity
Now, v = c/λ
Where;
c is speed of light = 3 × 10^(8) m/s
λ is wavelength of light.
Thus;
E = hc/λ
Making λ the subject, we have;
λ = hc/E
λ = (6.626 × 10^(-34) × 3 × 10^(8))/(8.364 × 10^(-19))
λ = 2.38 × 10^(-7) m
The mother liquor<span> is the part of a solution that is left over after it crystallizes. An example of a place you could find this is in sugar refinement.</span>