Answer:

Explanation:
According to Coulomb's law, the magnitude of the electric force between two point charges is directly proportional to the product of the magnitude of both charges and inversely proportional to the square of the distance that separates them:

Here k is the Coulomb constant. In this case, we have
,
and
. Replacing the values:

The negative sign indicates that it is an attractive force. So, the magnitude of the electric force is:

Answer:
write yoir question carefully i am not understanding it
Answer:
330 m/s approx
Explanation:
The RMS speed of a gas is proportional to square root of its absolute temperature is
V ( RMS ) ∝ √T

Here V₁ = 200 , T₁ = 23 +273 = 300K , T₂ = 227 +273 = 500 K
Putting the values
200 / V₂ = 
V₂ = 330 m/s approx
Do what?? i know how to do a lot of things to answer but there’s nothing to answer.♀️
Answer:
the magnitude of the tension on the cable necessary to keep the system in equilibrium is 1060.9 N
Explanation:
Given that;
Length L = 10 m
mass of beam m_b = 150 kg; weight W_beam = 150×9.8
mass of sign m = 75 kg
distance of sign hung from the beam from the wall d = 2.50 m
angle ∅ = 60°
g = 9.8 m/s²
Now,
Torque acting at one end of the beam will be;
= Tsin∅ × L - mg(d)-W × (L/2)
for equilibrium,
= 0
therefore, 0 = Tsin∅ × L - mg(d)-W × (L/2)
so we substitute
Tsin(60°) × 10 - 75×9.8(2.50) - 150 × 9.8× (10/2) = 0
Tsin(60°) × 10 - 1837.5 - 7350 = 0
Tsin(60°) × 10 - 9187.5 = 0
Tsin(60°) × 10 = 9187.5
divide both side by 10
Tsin(60°) = 918.75
T × 0.8660 = 918.75
T = 918.75 / 0.8660
T = 1060.9 N
Therefore, the magnitude of the tension on the cable necessary to keep the system in equilibrium is 1060.9 N