Answer:
a)
b) 
Explanation:
The complete question is written below:
An emu moving with constant acceleration covers the distance between two points that are 92 m apart in 6.5s. Its speed as it passes the second point is 14 m/s. What are (a) its speed at the first point and (b) its acceleration?
Since we are talking about constant acceleration, we can use the following equations:
(1)
(2)
Where:
is the distance between the two points
is the velocity of the emu at the first point
is the velocity of the emu at the second point
is the time it takes to the emu to cover the distance
is the emu's constant acceleration
Knowing this, let's begin with the answers:
<h2>a) Speed at the first point</h2>
In this situation wi will use equation (1):
(1)
Finding
:
(3)
(4)
(5)
<h2>
b) Emu's acceleration</h2>
Now we will substitute (5) in equation (2):
(6)
Finding
:
(7) This means the emu is decreasing its speed at a constant rate.
Answer:
hi your answer to this question is 220'
Explanation:
hope this helped you
In an undeveloped country, the rural areas will often be off the grid, with no access to consistent electricity. For a household living in this situation, <u>wood</u> would most likely be used to heat the home in the winter.
<u>Explanation:</u>
With the help of wood, we can burn it and make fire to heat the house in winter. In the earlier days, wood was used to produce heat and was used for cooking and other purposes.
So when a rural area does not have electricity,stoves would be fired with either biomass fuels, such as wood, branches, twigs or dung, or coal. Also for heating the home, the same would be used. These fuels are collected from the local environment in rural areas and purchased through markets in urban areas. Even now in some countries like India and China use wood or any other biomass fuel for heating and cooking.
Answer:
∑ τ =0, L₀ = 
Explanation:
In a circular turning movement, when the arms are extended and then contracted in two possibilities:
- They are lowered the force of gravity is what pulls them, the tension of the muscle becomes zero to allow this movement.
In this movement the force is vertical(gravity) and the movement of the center of mass of each arm is vertical, so that the work is the weight value of the arm by the distance traveled by the center of mass.
- Another possibility is that the arms have stuck to the body, in this case the person's muscles perform the force, this force is horizontal and the displacement is the horizontal of the center of mass of the arms from the extended position to the contracted
In these movements the torque of the external force is equal for each arm, but in the opposite direction, so they are canceled where a net torque of zero, this causes the angular momentum to be preserved, which changes is the moment of inertia of the system and therefore you must also change the angular velocity to keep your product constant
∑ τ =0
L₀ = 
I₀ w₀ = I w