The correct answer would be D. A new experiment would be needed to be done in order to test the conclusions. In science there is no authority, data is the only thing that matters. So if we have two different conclusions from the same date the only solution is to perform more tests and more experiments to see what is correct.
Answers are:
(1) KE = 1 kg m^2/s^2
(2) KE = 2 kg m^2/s^2
(3) KE = 3 kg m^2/s^2
(4) KE = 4 kg m^2/s^2
Explanation:
(1) Given mass = 0.125 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.125 * (16)
KE = 1 kg m^2/s^2
(2) Given mass = 0.250 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.250 * (16)
KE = 2 kg m^2/s^2
(3) Given mass = 0.375 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.375 * (16)
KE = 3 kg m^2/s^2
(4) Given mass = 0.500 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.5 * (16)
KE = 4 kg m^2/s^2
The magnitude of vector b is 8.58 Unit.
Since both the vectors a and b are perpendicular to each other, so we can apply the Pythagoras theorem to calculate the magnitude of the vector b.
Applying the Pythagoras theorem
(a-b)^2=a^2+b^2
15^2=12.3^2-b^2
b=8.58 unit
Therefor the magnitude of the vector b is 8.58 unit.
Answer: c
Explanation:
Sound waves cannot travel through a medium