In a spark ignition engine, the fuel is mixed with air and then inducted into the cylinder during the intake process. After the piston compresses the fuel-air mixture, the spark ignites it, causing combustion. The expansion of the combustion gases pushes the piston during the power stroke.
Credit: Department of Energy
High energy waves have Gamma rays
Answer:
The final velocity of the thrower is and the final velocity of the catcher is .
Explanation:
Given:
The mass of the thrower, .
The mass of the catcher, .
The mass of the ball, .
Initial velocity of the thrower,
Final velocity of the ball,
Initial velocity of the catcher,
Consider that the final velocity of the thrower is . From the conservation of momentum,
Consider that the final velocity of the catcher is . From the conservation of momentum,
Thus, the final velocity of thrower is and that for the catcher is .
Answer:
v_f = 10.85 m/s
Explanation:
We will apply the law of conservation of momentum here:
where,
m₁ = mass of roller skater = 47 kg
m₂ = mass of bag = 6 kg
v_1i = initial speed of roller skater = 12 m/s
v_2i = initial speed of the bag = 0 m/s
v_1f = final speed of the roller skater = ?
v_2f = final speed of the bag = ?
Both the bag and the skater will have same speed at the end because kater is carrying the bag:
v_1f = v_2f = v_f
Therefore, the equation will become:
<u>v_f = 10.85 m/s</u>