<h2>
Answer:442758.96N</h2>
Explanation:
This problem is solved using Bernoulli's equation.
Let be the pressure at a point.
Let be the density fluid at a point.
Let be the velocity of fluid at a point.
Bernoulli's equation states that for all points.
Lets apply the equation of a point just above the wing and to point just below the wing.
Let be the pressure of a point just above the wing.
Let be the pressure of a point just below the wing.
Since the aeroplane wing is flat,the heights of both the points are same.
So,
Force is given by the product of pressure difference and area.
Given that area is .
So,lifting force is
Answer:
0.1 m
Explanation:
F = Force exerted on spring = 3 N
k = Spring constant = 60 N/m
x = Displacement of the block
As the energy of the system is conserved we have
The position of the block is 0.1 from the initial position.
equilibrium i think if not sorry
Answer:
I am not sure about the answer as I don't have a proper calculator besides me now
Explanation:
but I used this equation:
(8.20)sin30(1-d)=10d
Idk whether it is correct or not, I'm just a student too
what is your method of doing this question?
Diagram 4 is the correct answer.