1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Juli2301 [7.4K]
3 years ago
12

Anxiety, moodiness, and feeling scared about the future are all common signs of

Physics
1 answer:
Brut [27]3 years ago
7 0
The answer would be distress
You might be interested in
A puck of mass 0.70 kg approaches a second, identical puck that is stationary on frictionless ice. The initial speed of the movi
natali 33 [55]

Answer:

  • v_1  =  \ 5.196 \frac{m}{s}
  • v_2 =  3 \frac{m}{s}

Explanation:

For this problem, we just need to remember conservation of momentum, as there are no external forces in the horizontal direction:

\vec{p}_i = \vec{p}_f

where the suffix i  means initial, and the suffix f means final.

The initial momentum will be:

\vec{p}_i = m_1 \ \vec{v}_{1_i} + m_2 \ \vec{v}_{2_i}

as the second puck is initially at rest:

\vec{v}_{2_i} = 0

Using the unit vector \vec{i} pointing in the original line of motion:

\vec{v}_{1_i} = 6.0 \frac{m}{s} \hat{i}

\vec{p}_i = 0.70 \ kg  \ 6.0 \frac{m}{s} \ \hat{i} + 0.70 \ kg \ 0

\vec{p}_i = 4.2 \ \frac{kg \ m}{s} \ \hat{i}

So:

\vec{p}_i =  4.2 \ \frac{kg \ m}{s} \ \hat{i} = \vec{p}_f

\vec{p}_f =  4.2 \ \frac{kg \ m}{s} \ \hat{i}

Knowing the magnitude and directions relative to the x axis, we can find Cartesian representation of the vectors using the formula

\ \vec{A} = | \vec{A} | \ ( \ cos(\theta) \ , \ sin (\theta) \ )

So, our velocity vectors will be:

\vec{v}_{1_f} = v_1 \ ( \ cos(30 \°) \ , \ sin (30 \°) \ )

\vec{v}_{2_f} = v_2 \ ( \ cos(-60 \°) \ , \ sin (-60 \°) \ )

We got

\vec{p}_f = 0.7 \ kg \ \vec{v}_{1_f} + 0.7 \ kg \ \vec{v}_{2_f}

4.2 \ \frac{kg \ m}{s} \ \hat{i} = 0.7 \ kg \   v_1 \ ( \ cos(30 \°) \ , \ sin (30 \°) \ )  + 0.7 \ kg \ v_2 \ ( \ cos(-60 \°) \ , \ sin (-60 \°) \ )

So, we got the equations:

4.2 \ \frac{kg \ m}{s}  = 0.7 \ kg \   v_1 \  cos(30 \°) + 0.7 \ kg \ v_2 \  cos(-60 \°)

and

0  = 0.7 \ kg \   v_1 \  sin(30 \°) + 0.7 \ kg \ v_2 \  sin(-60 \°).

From the last one, we get:

0  = 0.7 \ kg \  ( v_1 \  sin(30 \°) +  \ v_2 \  sin(-60 \°) )

0  =  v_1 \  sin(30 \°) +  \ v_2 \  sin(-60 \°)

v_1 \  sin(30 \°) = -  \ v_2 \  sin(-60 \°)

v_1  =  \ v_2 \  \frac{sin(60 \°)}{ sin(30 \°) }

and, for the first one:

4.2 \ \frac{kg \ m}{s}  = 0.7 \ kg  \ (  v_1 \  cos(30 \°) + v_2 \  cos(60 \°) )

\frac{4.2 \ \frac{kg \ m}{s}}{ 0.7 \ kg} =    v_1 \  cos(30 \°) + v_2 \  cos(60 \°)

\frac{4.2 \ \frac{kg \ m}{s}}{ 0.7 \ kg} =    v_1 \  cos(30 \°) + v_2 \  cos(60 \°)

6 \ \frac{m}{s} =    (\ v_2 \  \frac{sin(60 \°)}{ sin(30 \°) } ) \  cos(30 \°) + v_2 \  cos(60 \°)

6 \ \frac{m}{s} = v_2     (\   \frac{sin(60 \°)}{ sin(30 \°) } ) \  cos(30 \°) +   cos(60 \°)

6 \ \frac{m}{s} = v_2  * 2

so:

v_2 = 6 \ \frac{m}{s} / 2 = 3 \frac{m}{s}

and

v_1  =  \ 3 \frac{m}{s}  \  \frac{sin(60 \°)}{ sin(30 \°) }

v_1  =  \ 5.196 \frac{m}{s}

3 0
3 years ago
Is the SI unit of work newton?
Naya [18.7K]

Answer:

Newton is the SI unit for force . Newton is kg m2

7 0
3 years ago
Read 2 more answers
Which best describes a radioactive isitope
tatyana61 [14]

Answer:

The atoms that contain an unstable combination of neutrons and protons, or excess energy in their nucleus

5 0
3 years ago
A force of 4 kg weight acts on a body of mass 9.8 kg calculate the acceleration
White raven [17]

Answer:

here given is a weight

then force becomes mg

that is F=Mg

=4*9.8

then by using the formula

F=Ma

a=F/M

=4*9.8/9.8

=4

Explanation:

3 0
3 years ago
Read 2 more answers
A system gains 1500 J of heat, while the internal energy of the system increases by 4500 J and the volume decreases by . Assume
Assoli18 [71]

Answer:

Hence the pressure is 3\times 10^5 Pa

Explanation:

Given data

Q=1500 J   system gains heat

ΔV=- 0.010 m^3     there is a decrease in volume

ΔU= 4500 J        internal energy decrease

We know work done is

W= Q- ΔU

=1500-4500= -3000 J

The change in the volume at constant pressure is

ΔV= W/P

there fore P = W/ΔV= -3000/-0.01= 3×10^5

Hence the pressure is 3\times 10^5 Pa

3 0
3 years ago
Other questions:
  • Two tiny particles having charges 20.0 μC and 8.00 μC are separated by a distance of 20.0 cm What are the magnitude and directio
    8·1 answer
  • The application of force over distance is known as
    9·1 answer
  • The electrons that are gained or lost in an ionic bond are called...?
    10·1 answer
  • An object with a temperature of 0 Kelvin would not emit radiation.<br> a. True<br> b. False
    12·2 answers
  • Which of the following expresses the answer to
    11·1 answer
  • a rock with mass of 5kg is carried up a small hill 10 meters high. how much work had to be done in carrying the rock up hill
    8·1 answer
  • Atoms of element A decay to atoms of element B with a half-life of 20,000 years. If there are 10,000 atoms of A to begin with (a
    6·2 answers
  • A force of 300 N is used to stretch a horizontal spring with a 0.5 kg block. The length of spring is 0.25 m. The block is releas
    14·1 answer
  • What is the average power output of an athlete who can life 9.0 * 10^2 kg 2.5 m in 2.0 s?
    5·1 answer
  • What do ethical guidelines for research with human subjects mean?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!