Since the stone was dropped from height, its initial velocity = 0 m/s
Using v² = u² + 2gs.
Where g ≈ 10 m/s², u = initial velocity = 0 m/s, s = height from drop = 2.5 m
v² = u² + 2gs
v² = 0² + 2*10*2.5
v² = 0 + 50
v² = 50
v = √50
v ≈ 7.07 m/s
Hence velocity just before hitting the ground is ≈ 7.07 m/s
Answer:
The work done by gravity during the roll is 490.6 J
Explanation:
The work (W) is:

<em>Where</em>:
F: is the force
d: is the displacement = 20 m
The force is equal to the weight (W) in the x component:

<em>Where:</em>
m: is the mass of the bowling ball = 5 kg
g: is the gravity = 9.81 m/s²
θ: is the degree angle to the horizontal = 30°
Now, we can find the work:
Therefore, the work done by gravity during the roll is 490.6 J.
I hope it helps you!
Military personnel also use periscopes in some gun turrets and in armoured vehicles. More complex periscopes using prisms or advanced fibre optics instead of mirrors and providing magnification operate on submarines and in various fields of science
The variable would be “X”
Lipids are found in the sugars and starches, and are the main sources of energy in the body.