The instantenous velocity is just the slope of the graph at a certain instant. Since the graph is a straight line, its instantenous velocity is uniform through out. v = dx / dt = (40 - 10) / (50 - 0) = 0.6 m/s.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer:
the greater the speed, the greater the electromotive force
* The metal pole must be parallel to the field
* you must keep the ball of the field
Explanation:
To determine the advice to the runners, let's use the Farad equation to and
fem = -N
= -N
how the runners are moving
fi = B l x
fem = -N B l v
therefore the advice we can give are:
* the greater the speed, the greater the electromotive force
* The metal pole must be parallel to the field
* you must keep the ball of the field
Answer: "a stationary front" .
___________________________________
First, we need the distance of Europe and Wolf-359 from Earth.
- The distance of Europe from Earth is:

- The distance of Wolf-359 from Earth is instead 7.795 light years. However, we need to convert this number into km. 1 light year is the distance covered by the light in 1 year. Keeping in mind that the speed of light is

, and that in 1 year there are
365 days x 24 hours x 60 minutes x 60 seconds =

, the distance between Wolf-359 and Earth is

Now we can calculate the time the spaceship needs to go to Wolf-359, by writing a simple proportion. In fact, we know that the spaceship takes 2 years to cover

, so

from which we find

, the time needed to reach Wolf-359: