The measure of the quantity of heat exchanged.
Uses many different units of measurements.
Inert gas does not affect the equilibrium position:
It is because the partial pressures of the reaction components remain the same.
What is Inert Gas?
- Under a given set of conditions, an inert gas is a gas that does not undergo chemical reactions.
- The noble gases (helium, neon, argon, krypton, xenon, and radon) were previously known as "inert gases" due to their perceived lack of involvement in any biochemical processes.
- Because inert gases are non-reactive, they do not affect equilibrium partial pressures and thus do not affect volume.
- An inert gas does not react with the reactants or products; it does not change the concentration of the products and reactants. Furthermore, because the volume is constant, the concentrations are unaffected. As a result, this does not affect equilibrium.
The equilibrium position won't change if an inert gas is added. A volume change won't change the equilibrium position if the total moles of gas in the products and reactants are the same. When the volume is reduced, the process changes to create fewer moles of gas.
Learn more about the inert gas here,
brainly.com/question/15909389
#SPJ4
Answer:
1) HCOOCH3
2) CH3CH2COOCH3
3) CH3CH2CH2CH(CH3)COOCH3
Explanation:
In the reaction between an alcohol and a carboxylic acid, an ester and water are formed. It is analogous to the inorganic neutralization reaction but this reaction is called esterification in organic chemistry. Esters contain the general formula RCOOR where the RCOO moiety was obtained from the acid and the other R moiety was obtained from the alcohol. The -COOR shows the ester linkage in the molecule. The condensed structural formulas shown in the answer reflects these facts.
Answer:
Option B. A tractor–trailer traveling at 80 kph.
Explanation:
Kinetic energy can be defined as the energy possessed by a body in motion. Mathematically, it is expressed as:
K.E = ½mv²
Where:
K.E is the kinetic energy.
m is the mass of the object.
v is the velocity of the object.
From the equation, K.E = ½mv²,
We can say that the kinetic energy (K.E), is directly proportional to both the mass (m) and square of the velocity (v). This implies that the greater the mass of an object, the greater the kinetic energy and the smaller the mass, the smaller the kinetic energy.
Now, considering the options given in question above, it is evident that the tractor–trailer has a greater mass than the car, cheetah and motor cycle. Hence, the tractor–trailer will have a greater kinetic energy even though they are traveling with the same velocity.