1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scoray [572]
3 years ago
6

The density of a gaseous compound is 1.623 g/l at stp determine the molar mass of the compound

Chemistry
1 answer:
victus00 [196]3 years ago
4 0
<span>The molar mass of the compound is 36.355 g/mol. This is calculated by knowing that 1 mol of gas fills 22.4 L of volume, so 1.623 g/L = X g/mol * 1/22.4 mol/L -> 1.623 g/L * 22.4 L/mol = X g/mol -> 36.355 g/mol = X g/mol</span>
You might be interested in
(a) (1)
Elis [28]

Explanation:

The ionization energy of an atom is the amount of energy that is required to remove an electron from a mole of atoms in the gas phase:

M(g)  ®  M+(g)  +  e-

It is possible to remove more electrons from most elements, so this quantity is more precisely known as the first ionization energy, the energy to go from neutral atoms to cations with a 1+ charge.  The second ionization energy is the energy that is required to remove a second electron, to form 2+ cations from 1+ cations:

M+(g)  ®  M2+(g)  +  e-

The third ionization energy is the energy required to form 3+ cations:

M2+(g)  ®  M3+(g)  +  e-

and so on.  Ionization energies are always positive numbers, because energy must be supplied (an endothermic energy change) to separate electrons from atoms.  The second ionization energy is always larger than the first ionization energy, because it requires even more energy to remove an electron from a cation than it is from a neutral atom.

The first ionization energy varies in a predictable way across the periodic table.  The ionization energy decreases from top to bottom in groups, and increases from left to right across a period.  Thus, helium has the largest first ionization energy, while francium has one of the lowest.

From top to bottom in a group, orbitals corresponding to higher values of the principal quantum number (n) are being added, which are on average further away from the nucleus.  Since the outermost electrons are further away, they are less strongly attracted by the nucleus, and are easier to remove, corresponding to a lower value for the first ionization energy.From left to right across a period, more protons are being added to the nucleus, but the number of electrons in the inner, lower-energy shells remains the same.  The valence electrons feel a higher effective nuclear charge — the sum of the charges on the protons in the nucleus and the charges on the inner, core electrons.  The valence electrons are therefore held more tightly, the atom decreases in size (see atomic radius), and it becomes increasingly difficult to remove them, corresponding to a higher value for the first ionization energy.

 

The following charts illustrate the general trends in the first ionization energy:

Dunno kung tama beng pero trysorry kung mali

8 0
2 years ago
What is the molarity of a solution prepared from 85. 0 g cacl2 in 300. 0 g of solution? the density of the solution is 1. 05 g/m
Yuki888 [10]

Answer: 2.6 M

Explanation:

8 0
2 years ago
What action leads to crystal formation in minerals?
ArbitrLikvidat [17]
I believe c is the right answer.
4 0
3 years ago
Read 2 more answers
Sulfur undergoes combustion to yield sulfur trioxide by the following reaction equation:
12345 [234]

Answer:

Therefore, the amount of heat produced by the reaction of 42.8 g S = <u>(-5.2965 × 10²) kJ = (-5.2965 × 10⁵) J</u>

Explanation:

Given reaction: 2S + 3O₂ → 2 SO₃

Given: The enthalpy of reaction: ΔH = - 792 kJ

Given mass of S: w₂ = 42.8 g, Molar mass of S: m = 32 g/mol

In the given reaction, the number of moles of S reacting: n = 2

As, Number of moles: n = \frac{mass\: (w_{1})}{molar\: mass\: (m)}

∴  mass of S in 2 moles of S: w_{1} = n \times m = 2\: mol \times 32\: g/mol = 64\: g

<em>Given reaction</em>: 2S + 3O₂ → 2 SO₃

<em>In this reaction, the limiting reagent is S</em>

⇒ 2 moles S produces (- 792 kJ) heat.

or, 64 g of S produces (- 792 kJ) heat.

∴ 42.8 g of S produces (x) amount of heat

⇒ <u><em>The amount of heat produced by 42.8 g S:</em></u>

x = \frac{(- 792\: kJ) \times 42.8\: g}{64\: g} = (-529.65)\: kJ

\Rightarrow x = (-5.2965 \times 10^{2})\: kJ = (-5.2965 \times 10^{5})\: J

(\because 1 kJ = 10^{3} J)

<u>Therefore, the amount of heat produced by the reaction of 42.8 g S = (-5.2965 × 10²) kJ = (-5.2965 × 10⁵) J</u>

8 0
3 years ago
Pls no links!!
sasho [114]

Answer:

One advantage is radio telescopes have much longer wave length

6 0
2 years ago
Other questions:
  • Calculate the moles of Cu in 7.4×1021 atoms of Cu.
    10·1 answer
  • How does being able to understand the interactions of natural systems, such as weather, benefit society? How are the scientific
    5·2 answers
  • Chemical, potential energy is stored in a battery.
    12·2 answers
  • Description
    8·1 answer
  • If 21.3 grams of lithium react with excess water, how many liters of hydrogen gas can be produced at 297 kelvin and 1.40 atmosph
    10·1 answer
  • Organic chemistry!!! Plz help
    5·1 answer
  • Why does moon have different appearance?<br><br>NONSENSE = REPORT ​
    10·1 answer
  • Science helPPPPPPPPP MEEEEEEEEE RIGHT NOW
    12·1 answer
  • What is the oxidation state of S in S2032-?<br> O A. +3<br> O B. -2<br> O C. +4<br> D. +2
    8·1 answer
  • In an alkane the mass ratio between hydrogen and carbon is 7/36. What is the formula of alkane?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!