It would be D.the food chain
1) You need to use the atomic mass of copper.
You can find it in a periodic table. It is 63.546 amu.
2) The atomic mass is the weigthed mass of the different isotopes.
This is, the atomic mass of one element is the atomic mass of each isotope times its corresponding abundance:
=> atomic mass of the element = abundance isotope 1 * atomic mass isotope 1 + abundance isotope 2 * atomic mass isotope 2 + ....+abundance isotope n * atomic mass isotope n.
3) The statement tells there are two isotopes so the abundance of one is x and the abundance of the other is 1 - x
=> 63.546 amu = x * 62.9296 amu + (1-x)*64.9278
=> 63.546 = 62.9296x + 64.9278 - 64.9278x
=> 64.9278x - 62.9296 = 64.9278 - 63.546
=> 1.9982x = 1.3818
=> x = 1.3818 / 1.9982 = 0.6915 = 69.15%
=> 1 - x = 1 - 0.6915 = 0.3085 = 30.85%
Answer:
Cu-63 69.15%;
Cu-65 : 30.85%
Answer: a)
: Decomposition
b)
: double displacement
c)
: Synthesis (Combination)
d)
: redox
Explanation:
Decomposition is a type of chemical reaction in which one reactant gives two or more than two products.

A double displacement reaction is one in which exchange of ions take place.

Synthesis reaction is a chemical reaction in which two reactants are combining to form one product.

Redox reaction is a type of chemical reaction in which oxidation and reduction takes place in one single reaction. The oxidation number of one element increases and the oxidation number of other element decreases.

Answer:
1.7 bar
Explanation:
We can use the <em>Ideal Gas Law</em> to calculate the individual gas pressure.
pV = nRT Divide both sides by V
p = (nRT)/V
Data: n = 1.7 × 10⁶ mol
R = 0.083 14 bar·L·K⁻¹mol⁻¹
T = 22 °C
V = 2.5 × 10⁷ L
Calculations:
(a) <em>Change the temperature to kelvins
</em>
T = (22 + 273.15) K
= 295.15 K
(b) Calculate the pressure
p = (1.7 × 10⁶ × 0.083 14 × 295.15)/(2.5× 10⁷)
= 1.7 bar