<u>Note that</u>:
The gravitational potential energy = 
where m: is the mass, g: the acceleration due to the gravity and h is the height from the earth surface
Then, we can increase the gravitational potential energy by increasing the mass or the height from the earth surface
<u>In our question</u>, we can increase the gravitational potential energy by
<u>A) Strap a boulder to the car so that it wights more.</u>
Fnet = (mass) (acceleration)
= 11 kg x 3.7m/s^2
= 41 N
Answer:
When a body moves along a straight line with uniform speed or steady speed is called Uniform motion. When a body moves along a straight line but with variable or change in speed is called non-uniform motion.Hope this answer helps.
Answer:
W = 1.06 MJ
Explanation:
- We will use differential calculus to solve this problem.
- Make a differential volume of water in the tank with thickness dx. We see as we traverse up or down the differential volume of water the side length is always constant, hence, its always 8.
- As for the width of the part w we see that it varies as we move up and down the differential element. We will draw a rectangle whose base axis is x and vertical axis is y. we will find the equation of the slant line that comes out to be y = 0.5*x. And the width spans towards both of the sides its going to be 2*y = x.
- Now develop and expression of Force required:
F = p*V*g
F = 1000*(2*0.5*x*8*dx)*g
F = 78480*x*dx
- Now, the work done is given by:
W = F.s
- Where, s is the distance from top of hose to the differential volume:
s = (5 - x)
- We have the work as follows:
dW = 78400*x*(5-x)dx
- Now integrate the following express from 0 to 3 till the tank is empty:
W = 78400*(2.5*x^2 - (1/3)*x^3)
W = 78400*(2.5*3^2 - (1/3)*3^3)
W = 78400*13.5 = 1058400 J
Answer:
- The emf of the generator is 6V
- The internal resistance of the generator is 1 Ω
Explanation:
Given;
terminal voltage, V = 5.7 V, when the current, I = 0.3 A
terminal voltage, V = 5.1 V, when the current, I = 0.9 A
The emf of the generator is calculated as;
E = V + Ir
where;
E is the emf of the generator
r is the internal resistance
First case:
E = 5.7 + 0.3r -------- (1)
Second case:
E = 5.1 + 0.9r -------- (2)
Since the emf E, is constant in both equations, we will have the following;
5.1 + 0.9r = 5.7 + 0.3r
collect similar terms together;
0.9r - 0.3r = 5.7 - 5.1
0.6r = 0.6
r = 0.6/0.6
r = 1 Ω
Now, determine the emf of the generator;
E = V + Ir
E = 5.1 + 0.9x1
E = 5.1 + 0.9
E = 6 V