Answer:
This answer to this one should be <em><u>Volume</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>Water</u></em><em><u>.</u></em>
Answer: a) C decreases; b) Q stays the same; c) E is the same
d) ΔV increase
Explanation: In order to explain this problem we have to consider the following:
C=εoA/d where A and d are the area and the separation of the plates, respectively.
Increasing d, produces a decrease of C.
Q remain constant becasuse the plates are charges and the wire are isoloted each other.
We also know that ΔV=E*d where E is electric field between the plates.
And E= Q/εo*A ( a constant between the plates)
As we can see from above, ΔV depends directely of the d so if d increase ΔV also increase. To do that we have to do work on the system.
Answer:
say a lighter car is going 80mph and a heavier car is going the same speed who do you think will have more damage i will say the heavier car
Explanation:
Answer:
A. The electron will begin to move along the axis, towards the centre and the instantaneous velocity because the force acting on it depends largely on acceleration and x until it reaches maximum velocity at centre.
B. Veloctiy (Vb) = 1.66m/s
Explanation:
Given the following data
x(a) = 0.3m
x(b) = 0
q = 1.6×10^-19
Q = 24nc
r = 0.15m
Required: the motion of the electron and the velocity (Vb)
1. At point A the electron will begin to move along the axis from point A to point B, the magnitude of the electric field will change while moving which depends on that and this will produce instantaneous force which will later change and the acceleration will change too while moving, the velocity would reach maximum value at point B
2. Potential energy and kinetic energy are given by
U(a) + K(a) = U(b) + K(b). . .1
Initial P.E and K.E are given as
U(a) = kQ/√x²(a) + a2
By substitution, we have
U(a) = 9×10^9 × (-1.9×10^-19)×24×10^-9/√(0.15)²+(0.3²)
U(a) = -1.03×10^-16
Final P.E and K.E are given as
U(b) = KQ/√x²(b) + a2
By substitution, we have
U(b) = 9×10^9×(-1.9×10^-19)×24×10^-9/√(0.15)²+(0)²
U(b) = -2.3×10^16
3. By substitution into equation 1 becomes
-1.03×10^-6 - 2.3×10^-16 + MV²(b)/2
V(b) = √2×1.27×10^-16/9.1×10^31
V(b) = 1.66×10^7m/s