In my opinion the answer is D
This
can be solved using Dalton's Law of Partial pressures. This law states that the
total pressure exerted by a gas mixture is equal to the sum of the partial
pressure of each gas in the mixture as if it exist alone in a container. In
order to solve, we need the partial pressures of the gases given. Calculations
are as follows:<span>
<span>P = 3.00 atm + 1.80 atm + 0.29 atm + 0.18 atm + 0.10 atm</span></span>
<span><span>P = 5.37 atm</span></span>
Answer: 69.72 kg of cryolite will be produced.
Explanation:
The balanced chemical equation is:

To calculate the moles, we use the equation:

moles of
= 
moles of
= 
moles of
= 
As 1 mole of
reacts with 6 moles of 
166 moles of
reacts with =
moles of 
As 1 mole of
reacts with 12 moles of 
166 moles of
reacts with =
moles of 
Thus
is the limiting reagent.
As 1 mole of
produces = 2 moles of cryolite
166 moles of
reacts with =
moles of cryolite
Mass of cryolite
= 
Thus 69.72 kg of cryolite will be produced.
Answer:
The density of copper is 0.5 g/mL
Explanation:
Given data:
Mass of copper = 6 g
Volume of copper = 12 mL
Density of copper = ?
Solution:
Formula:
d = m/v
d = density
m = mass
v = volume
d = 6 g/ 12 mL
d = 0.5 g/mL
Thus, the density of copper is 0.5 g/mL
Answer: The new volume at different given temperatures are as follows.
(a) 109.81 mL
(b) 768.65 mL
(c) 18052.38 mL
Explanation:
Given:
= 571 mL, 
(a) 
The new volume is calculated as follows.

(b) 
Convert degree Fahrenheit into degree Cesius as follows.

The new volume is calculated as follows.

(c) 
The new volume is calculated as follows.
