<span>a = (v2 - v1)/t= acceleration formula
a = (70 - 0)/7
a = 10 km/hr/sec
-----
It's better to use as few units as possible.
10 km/hr = 10 km*1000 m/km/(1 hr*3600 sec/hr) = 25/9 m/sec
a= 25/9 m/sec/se</span>
Answer:
C
Explanation:
That is where the most heat and light is showing on this diagram.
Answer:
B. He should change the lengths of the vectors that point tangent to the circle so that each is the same length.
Explanation:
A uniform circular motion is a motion in a circle where the tangential speed of the object is constant.
In the motion map:
- The arrows pointing towards the centre of the circle represent the centripetal acceleration, and their length represent the magnitude of the acceleration
- The arrows pointing tangential to the circle represent the tangential speed, and their length represent the magnitude of the speed
In this motion map, we see that the length of the vectors pointing tangent to the circle is not constant: this means that the speed is not constant. In order to have a uniform circular motion, the speed must be constant, therefore the lengths of the vectors that point tangent to the circle must be the same.
Answer:
955.5N
Explanation:
The normal force is given by the difference between the centripetal force and gravity at the top of the loop:

mass m = 65kg
radius of the loop r = 4m
velocity v = ?
g = 9.8 m/s²
To find the centripetal force, you need to find the velocity of the car at the top of the loop.
Use energy conservation:

At the top of the hill:

At the top of the loop:

Setting both energies equal and canceling the mass m gives:

Solving for v:

Using v in the first equation:

Answer:
we measure sound intensity in <em><u>D</u></em><em><u>ecibels</u></em>.