You could solve this in two ways: using the ideal gas law (Van der Waals parameters optional), or by using the density. Since you specify a pressure and temperature (in kelvin), I will use the ideal gas law. Ideal gas law: PV=nRT P = pressure = 1.00 ATM V = volume = 1.00 L n = moles = what you're solving for R = gas constant = 0.0821 L*ATM/(mol*T) (T is absolute temperature (kelvin)) T = absolute temperature = 298 K (1.00atm)(1.00L) = n(0.0821L*ATM*mol -1 T -1 )(298K) n = 0.04 moles A n = Avogadro's Number = number of molecules in one mole = 6.022141 * 10 23 0.04 * 6.022141*10 23 = 2.409 * 10 22 molecules of N 2 in 1.00L at 1.00atm and 298K
Answer:
The force per unit length is 
Explanation:
The current carrying by each wires = 2.85 A
The current in both wires flows in same direction.
The gap between the wires = 6.10 cm
Now we will use the below expression for the force per unit length. Moreover, before using the below formula we have to change the unit centimetre into meter. So, we just divide the centimetre with 100.

Answer:
Part a)

Part b)

Explanation:
As per momentum conservation we know that there is no external force on this system so initial and final momentum must be same
So we will have




Part b)
By equation of kinetic energy we have



