1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lunna [17]
3 years ago
12

100 POINTS AND BRAINLIEST! What were the Magdeburg Hemispheres?

Physics
2 answers:
amm18123 years ago
8 0

The Magdeburg hemispheres are a pair of large copper hemispheres, with mating rims. They were used to demonstrate the power of atmospheric pressure. When the rims were sealed with grease and the air was pumped out, the sphere contained a vacuum and could not be pulled apart by teams of horses.

pogonyaev3 years ago
7 0

Answer:

Magdeburg hemispheres are two half-spheres of equal size. Placing them together traps air between them. This air is merely trapped, and not compressed, so the pressure inside is the same as the pressure of the atmosphere outside the spheres. The spheres thus pull apart with nearly no resistance.

You might be interested in
Why couldnt mendeleev organize the entire table during his research
NARA [144]
Cause he left out the noble gases out of the periodic table for one good reason, 1: He did not know them
6 0
2 years ago
Read 2 more answers
What do tendons connect skeletal muscles to?​
Doss [256]

Answer:

Tendons connect muscle to bone. These tough, yet flexible, bands of fibrous tissue attach the skeletal muscles to the bones they move. Essentially, tendons enable you to move; think of them as intermediaries between muscles and bones.

Hope this helps! (:

6 0
2 years ago
Read 2 more answers
A baseball pitcher throws a ball horizontally at a speed of 34.0 m/s. A catcher is 18.6 m away from the pitcher. Find the magnit
Sidana [21]

To develop this problem, it is necessary to apply the concepts related to the description of the movement through the kinematic trajectory equations, which include displacement, velocity and acceleration.

The trajectory equation from the motion kinematic equations is given by

y = \frac{1}{2} at^2+v_0t+y_0

Where,

a = acceleration

t = time

v_0 = Initial velocity

y_0 = initial position

In addition to this we know that speed, speed is the change of position in relation to time. So

v = \frac{x}{t}

x = Displacement

t = time

With the data we have we can find the time as well

v = \frac{x}{t}

t = \frac{x}{v}

t = \frac{18.6}{34}

t = 0.547s

With the equation of motion and considering that we have no initial position, that the initial velocity is also zero then and that the acceleration is gravity,

y = \frac{1}{2} at^2+v_0t+y_0

y = \frac{1}{2} gt^2+0+0

y = \frac{1}{2} gt^2

y = \frac{1}{2} 9.8*0.547^2

y = 1.46m

Therefore the vertical distance that the ball drops as it moves from the pitcher to the catcher is 1.46m.

6 0
3 years ago
How do I calculate the tension in the horizontal string?
matrenka [14]

ANSWER

T₂ = 10.19N

EXPLANATION

Given:

• The mass of the ball, m = 1.8kg

First, we draw the forces acting on the ball, adding the vertical and horizontal components of each one,

In this position, the ball is at rest, so, by Newton's second law of motion, for each direction we have,

\begin{gathered} T_{1y}-F_g=0_{}_{}_{} \\ T_2-T_{1x}=0 \end{gathered}

The components of the tension of the first string can be found considering that they form a right triangle, where the vector of the tension is the hypotenuse,

\begin{gathered} T_{1y}=T_1\cdot\cos 30\degree \\ T_{1x}=T_1\cdot\sin 30\degree \end{gathered}

We have to find the tension in the horizontal string, T₂, but first, we have to find the tension 1 using the first equation,

T_1\cos 30\degree-m\cdot g=0

Solve for T₁,

T_1=\frac{m\cdot g}{\cos30\degree}=\frac{1.8kg\cdot9.8m/s^2}{\cos 30\degree}\approx20.37N

Now, we use the second equation to find the tension in the horizontal string,

T_2-T_1\sin 30\degree=0

Solve for T₂,

T_2=T_1\sin 30\degree=20.37N\cdot\sin 30\degree\approx10.19N

Hence, the tension in the horizontal string is 10.19N, rounded to the nearest hundredth.

8 0
1 year ago
A car with a mass of 1380 Kg is traveling at 23 m/s to the north. A truck with a mass of 1625 Kg is traveling at 26 m/s to the s
trasher [3.6K]

Answer: -3.49 m/s (to the south)

Explanation:

This problem can be solved by the Conservation of Momentum principle which establishes the initial momentum p_{i} must be equal to the final momentum p_{f}, and taking into account this is aninelastic collision:

Before the collision:

p_{i}=mV_{o}+MU_{o} (1)

After the collision:

p_{f}=(m+M)V_{f} (2)

Where:

m=1380 kg is the mass of the car

V_{o}=23 m/s is the velocity of the car, directed to the north

M=1625 kg is the mass of the truck

U_{o}=-26 m/s is the velocity of the truck, directed to the south

V_{f} is the final velocity of both the car and the truck

p_{i}=p_{f} (3)

mV_{o}+MU_{o}=(m+M)V_{f} (4)

Isolating V_{f}:

V_{f}=\frac{mV_{o}+MU_{o}}{m+M} (5)

V_{f}=\frac{(1380 kg)(23 m/s)+(1625 kg)(-26 m/s)}{1380 kg+1625 kg} (6)

Finally:

V_{f}=-3.49 m/s The negative sign indicates the direction of the velocity is to the south

8 0
3 years ago
Other questions:
  • What are five things that cars use to live or help them function
    7·2 answers
  • A toy car has a momentum of 3 kilogram meters per second south. The car has a 1-kilogram mass. Which is the velocity of the car?
    12·1 answer
  • A body decelerates uniformly to a constant speed and after some time it accelerates uniformly Draw the shape of speed time graph
    14·1 answer
  • 1.) What things signal the coming of spring?
    12·1 answer
  • Which light wave could be emitted from Light Source 2?<br> A<br> B<br> C<br><br> explain your answer
    14·2 answers
  • 1. Black Panther ran 567.5 ks to the east in 2.3 hours then tumed around and ran 2218 km to
    7·1 answer
  • "On a good day, it takes Mr. Hess 23 minutes (1380 seconds) to drive the 12 miles (19,300 meters). What is his average velocity
    12·1 answer
  • Exercising in hot weather can cause what side effects ?
    8·2 answers
  • A train slows down as it rounds a sharp horizontal turn, going from 88.0 km/h to 52.0 km/h in the 18.0 s that it takes to round
    15·1 answer
  • Activity A:
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!