1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lunna [17]
3 years ago
15

I need help with finding these?

Physics
1 answer:
Alchen [17]3 years ago
6 0
I think 23 is b and 24 a?
You might be interested in
What is the minimal mass of helium (density 0.18 kg/m3) needed to lift a balloon carrying two people in a basket, if the total m
Sergio039 [100]

Answer:   
 M[min] = M[basket+people+ balloon, not gas] * ΔR/R[b] 
 Î”R is the difference in density between the gas inside and surrounding the balloon. 
 R[b] is the density of gas inside the baloon.   
 ==================================== 
 Let V be the volume of helium required. 
 Upthrust on helium = Weight of the volume of air displaced = Density of air * g * Volume of helium = 1.225 * g * V   
 U = 1.225gV newtons 
 ---- 
 Weight of Helium = Volume of Helium * Density of Helium * g 
 W[h] = 0.18gV N   
 Net Upward force produced by helium, F = Upthrust - Weight = (1.225-0.18) gV = 1.045gV N  -----

 
 Weight of 260kg = 2549.7 N 
 Then to lift the whole thing, F > 2549.7 
 So minimal F would be 2549.7 
 ---- 
 1.045gV = 2549.7 
 V = 248.8 m^3   
 Mass of helium required = V * Density of Helium = 248.8 * 0.18 = 44.8kg (3sf)   
 =====   
 Let the density of the surroundings be R 
 Then U-W = (1-0.9)RgV = 0.1RgV   
 So 0.1RgV = 2549.7 N 
 V = 2549.7 / 0.1Rg   
 Assuming that R is again 1.255, V = 2071.7 m^3 
 Then mass of hot air required = 230.2 * 0.9R = 2340 kg   
 Notice from this that M = 2549.7/0.9Rg * 0.1R so   
 M[min] = Weight of basket * (difference in density between balloon's gas and surroundings / density of gas in balloon)   
 M[min] = M[basket] * ΔR/R[b]
3 0
3 years ago
Which characteristic must a food have to receive a “natural” label from the FDA ?
adelina 88 [10]
No artificial ingredients
i only know that because my mom was vegan for two years
4 0
3 years ago
In the equation for centripetal force, which expression represents the centripetal acceleration of the object? mv2 StartFraction
Sphinxa [80]

Answer: \frac{V^{2}}{r}

Explanation:

According to Newton's 2nd Law of motion the force F is proportional to the mass Fm and acceleration a:

F=m.a (1)

On the other hand, the equation for the Centripetal force is:

F=\frac{mV^{2}}{r} (2)

Where:

V is the velocity

r is the radius of the circular motion

Making (1) and (2) equal:

m.a=\frac{mV^{2}}{r} (3)

Hence:

a=\frac{V^{2}}{r} This is the expression for the centripetal acceleration

It should be noted, this acceleration is directed toward the center of the circumference of the circular motion (that's why it's called centripetal acceleration).

3 0
3 years ago
Read 2 more answers
A block is pulled across a flat surface at a constant speed using a force of 50 newtons at an angle of 60 degrees above the hori
vladimir2022 [97]

The magnitude of the friction force is 25 N

Explanation:

To solve this problem, we just have to analyze the forces acting on the block along the horizontal direction. We have:

  • The horizontal component of the pulling force, F cos \theta, where F = 50 N is the magnitude and \theta=60^{\circ} is the angle between the direction of the force and the horizontal; this force acts in the  forward direction
  • The force of friction, F_f, acting in the backward direction

According to Newton's second law, the net force acting on the block in the horizontal direction must be equal to the product between the mass of the block and its acceleration:

\sum F_x = ma_x

where

m is the mass of the block

a_x is the horizontal acceleration

However, the block is moving at constant speed, so the acceleration is zero:

a_x = 0

So the equation becomes

\sum F_x = 0 (1)

The net force here is given by

\sum F_x = F cos \theta - F_f (2)

And so, by combining (1) and (2), we find the magnitude of the friction force:

F cos \theta - F_f = 0\\F_f = F cos \theta = (50)(cos 60^{\circ})=25 N

Learn more about  force of friction:

brainly.com/question/6217246

brainly.com/question/5884009

brainly.com/question/3017271

brainly.com/question/2235246

#LearnwithBrainly

4 0
3 years ago
A. 24.89<br> B. 25.89<br> C. 17.74<br> D. 19.73
Veronika [31]

Answer: D

Explanation:

Just did it got an 100

5 0
2 years ago
Other questions:
  • Can someone do this page for me please (or at least a question or two)
    11·1 answer
  • How can Newton's third law describe the forces affecting a rocket as it
    5·2 answers
  • So we were working on some pulley problems but this one has kinda left me scratching my head, please help! My question is for pa
    10·1 answer
  • A car is moving eastward and speeding up. the momentum of the car is
    15·1 answer
  • A 10.0-g bullet is fired into a stationary block of wood having mass 5.00 kg. The bullet embeds 10 pts into the block and the sp
    6·1 answer
  • What is a time paradox?
    14·2 answers
  • A bear, searching for food wanders 35.0 meters east then 20.0 meters north. Calculate the angle of the bear's displacement (w/re
    5·1 answer
  • What is the difference between longitudinal and transverse waves
    7·1 answer
  • Please helppppp asapppp
    10·1 answer
  • The speed of an object increases by 30 m/s in 10 seconds. what is its acceleration?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!