No it won't. It'll vary inversely as the square of the separation.
The force tending to lift the load (vertical force) is equal to <u>22.5N.</u>
Why?
Since the boy is pulling a load (150N) with a string inclined at an angle of 30° to the horizontal, the total force will have two components (horizontal and vertical component), but we need to consider the given information about the tension of the string which is equal to 105N.
We can calculate the vertical force using the following formula:

Hence, we can see that <u>the force tending to lift the load</u> off the ground (vertical force) is equal to <u>22.5N.</u>
Have a nice day!
Answer: The correct answer is option (A).
Explanation
Ampacity is defined as the maximum amount of the current carried by the conductor continuously without exceeding its temperature rating.
The ampacity of the wire of the heater is 30 A .And this means that wire is capable of conducting current of maximum amount of 30 Ampere through it without exceeding its temperature rating.
Hence, the correct answer is option is (A).
Answer:
V = 576 V
Explanation:
Given:
- The area of the two plates A = 0.070 m^2
- The space between the two plates d = 6.3 mm
- Te energy density u = 0.037 J /m^3
Find:
- What must the potential difference between the plates V?
Solution:
- The energy density of the capacitor with capacitance C and potential difference V is given as:
u = 0.5*ε*E^2
- Where the Electric field strength E between capacitor plates is given by:
E = V / d
Hence,
u = 0.5*ε*(V/d)^2
Where, ε = 8.854 * 10^-12
V^2 = 2*u*d^2 / ε
V = d*sqrt ( 2*u / ε )
Plug in values:
V = 0.0063*sqrt ( 2 * 0.037 / (8.854 * 10^-12) )
V = 576 V
Answer:
D. Graphing the force as a function of distance and calculating the area under the curve.
Explanation: