1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luba_88 [7]
3 years ago
15

The interior space of large box is kept at 30 C. The walls of the box are 3 m high and have a ‘sandwich’ construction consisting

of 1.25 cm thick plywood (k = 0.104 W/m-K) on two sides with 5 cm thick Styrofoam (k = 0.04 W/m-K) in the middle. On a cold day when the exterior temperature is 0 C what is the heat loss from the wall per unit area? What are the interface temperatures between the plywood and Styrofoam?

Physics
1 answer:
White raven [17]3 years ago
4 0

Answer:

\frac{\dot Q}{A} =20.129\ W.m^{-2}

T_1=27.58\ ^{\circ}C & T_2=2.41875\ ^{\circ}C

Explanation:

Given:

  • interior temperature of box, T_i=30^{\circ}C
  • height of the walls of box, h=3\ m
  • thickness of each layer of bi-layered plywood, x_p=1.25\ cm=0.0125\ m
  • thermal conductivity of plywood, k_p=0.104\ W.m^{-1}.K^{-1}
  • thickness of sandwiched Styrofoam, x_s=5\ cm=0.05\ m
  • thermal conductivity of Styrofoam, k_s=0.04\ W.m^{-1}.K^{-1}
  • exterior temperature, T_o=0^{\circ}C

<u>From the Fourier's law of conduction:</u>

\dot Q=\frac{dT}{(\frac{x}{kA}) }

\dot Q=\frac{dT}{R_{th} } ....................................(1)

<u>Now calculating the equivalent thermal resistance for conductivity using electrical analogy:</u>

R_{th}=R_p+R_s+R_p

R_{th}=\frac{x_p}{k_p.A}+\frac{x_s}{k_s.A}+\frac{x_p}{k_p.A}

R_{th}=\frac{1}{A} (\frac{x_p}{k_p}+\frac{x_s}{k_s}+\frac{x_p}{k_p})

R_{th}=\frac{1}{A} (\frac{0.0125}{0.104}+\frac{0.05}{0.04}+\frac{0.0125}{0.104})

R_{th}=\frac{1.4904}{A} .....................(2)

Putting the value from (2) into (1):

\dot Q=\frac{30-0}{\frac{1.4904}{A} }

\dot Q=\frac{30\ A}{1.4904}

\frac{\dot Q}{A} =20.129\ W.m^{-2} is the heat per unit area of the wall.

The heat flux remains constant because the area is constant.

<u>For plywood-Styrofoam interface from inside:</u>

\frac{\dot Q}{A} =k_p.\frac{T_i-T_1}{x_p}

20.129=0.104\times \frac{30-T_1}{0.0125}

T_1=27.58\ ^{\circ}C

&<u>For Styrofoam-plywood interface from inside:</u>

\frac{\dot Q}{A} =k_s.\frac{T_1-T_2}{x_s}

20.129=0.04\times \frac{27.58-T_2}{0.05}

T_2=2.41875\ ^{\circ}C

You might be interested in
If he leaves the ramp with a speed of 31.0 m/s and has a speed of 29.5 m/s at the top of his trajectory, determine his maximum h
raketka [301]

Answer:

The maximum height reached is 4.63 m.

Explanation:

Given:

Initial speed of the man (u) = 31.0 m/s

Speed at the top of trajectory (u_x) = 29.5 m/s

Acceleration due to gravity (g) = 9.8 m/s²

When the man reaches the top of the trajectory, the vertical component of velocity becomes zero and hence only horizontal component of velocity acts on him.

Also, since there is no net force acting in the horizontal direction, the acceleration is zero in the horizontal direction from Newton's second law. Thus, the horizontal component of velocity always remains the same.

So, speed at the top of trajectory is nothing but the horizontal component of initial velocity.

Now, initial velocity can be rewritten in terms of its components as:

u^2=u_x^2+u_y^2

Where, u_x\ and\ u_y are the initial horizontal and vertical velocities of the man.

Now, plug in the given values and simplify. This gives,

(31.0)^2=(29.5)^2+u_y^2\\\\961=870.25+u_y^2\\\\u_y^2=961-870.25\\\\u_y^2=90.75\ m^2/s^2--------1

Now, we know that, for a projectile motion, the maximum height is given as:

H=\frac{u_y^2}{2g}

Plug in the value from equation (1) and 9.8 for 'g' to solve for 'H'. This gives,

H=\frac{90.75}{2\times 9.8}\\\\H=4.63\ m

Therefore, the maximum height reached is 4.63 m.

3 0
3 years ago
The electrons in the beam of a television tube have a kinetic energy of 2.20 10-15 j. initially, the electrons move horizontally
dalvyx [7]
(a) The electrons move horizontally from west to east, while the magnetic field is directed downward, toward the surface. We can determine the direction of the force on the electron by using the right-hand rule:
- index finger: velocity --> due east
- middle finger: magnetic field --> downward
- thumb: force --> due north
However, we have to take into account that the electron has negative charge, therefore we have to take the opposite direction: so, the magnetic force is directed southwards, and the electrons are deflected due south.

b) From the kinetic energy of the electrons, we can find their velocity by using
K= \frac{1}{2}mv^2
where K is the kinetic energy, m the electron mass and v their velocity. Re-arranging the formula, we find
v= \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2 \cdot 2.20 \cdot 10^{-15} J}{9.1 \cdot 10^{-31} kg} }=6.95 \cdot 10^7 m/s

The Lorentz force due to the magnetic field provides the centripetal force that deflects the electrons:
qvB = m \frac{v^2}{r}
where
q is the electron charge
v is the speed
B is the magnetic field strength
m is the electron mass
r is the radius of the trajectory
By re-arranging the equation, we find the radius r:
r= \frac{mv}{qB}= \frac{(9.1 \cdot 10^{-31} kg)(6.95 \cdot 10^7 m/s)}{(1.6 \cdot 10^{-19} C)(3.00 \cdot 10^{-5} T)}=13.18 m

And finally we can calculate the centripetal acceleration, given by:
a_c =  \frac{v^2}{r}= \frac{(6.95 \cdot 10^7 m/s)^2}{13.18 m}=3.66 \cdot 10^{14} m/s^2
5 0
3 years ago
What is the amount of heat required to raise the temperature of 200.0 g of aluminum by 10 c?
mash [69]
Q = 175.8J = 1.8• 10 2 J
5 0
3 years ago
E20E20: The word “virtual” refers to something that exists in effect but not in actual fact. How does this definition relate to
Lubov Fominskaja [6]

The correct answer (sample response) is:

The image seems to be behind the mirror, but nothing is really there.

Include the following in your response:

The image appears to be behind the mirror.

If someone looks behind the mirror, there is no image there.

|Huntrw6|

5 0
3 years ago
Read 2 more answers
Here is a "formula" for building a model airplane: 1 body + 2 wings + 4 jet engines + 1 tailpiece → 1 model airplane if a hobbyi
WINSTONCH [101]
Your answer is 44 wings

3 0
3 years ago
Read 2 more answers
Other questions:
  • If you drop a bouncing ball from a height of 40 centimeters, explain why it can only bounce back up to a height of less than 40
    12·1 answer
  • 1. Explain the importance of doing muscular strength and muscular endurance activities.
    5·2 answers
  • A 2.1 ✕ 103-kg car starts from rest at the top of a 5.9-m-long driveway that is inclined at 19° with the horizontal. If an avera
    6·1 answer
  • If the Net Force of the object is 30 N to the left, and mass is 3 kg what is the objects acceleration?
    9·1 answer
  • Qué fuerza neta actúa sobre una caja que se desliza cuando ejerces sobre ella una fuerza de 110 N y la fricción entre la caja y
    14·1 answer
  • What is the atmospheric pressure and temperature at sea level in a standard<br> atmosphere?
    9·1 answer
  • If you use a hair dryer, what type of electrical transformation is this?
    5·1 answer
  • State one use and one disadvantage of the expansion of materials when they are heated.
    10·1 answer
  • What is the acceleration along the ground of a 10 kg wagon when it is pulled with a force of 44 N at an angle of 35° above the
    7·1 answer
  • In a vacuum all electromagnetic waves have the same?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!