<span>The Badminton World Federation</span>
Answer:
362.41 km/h
Explanation:
F = Force
m = Mass = 84 kg
g = Acceleration due to gravity = 9.81 m/s²
C = Drag coefficient = 0.8
ρ = Density of air = 1.21 kg/m³
A = Surface area = 0.04 m²
v = Terminal velocity
F = ma

Converting to km/h

The terminal velocity of the stone is 362.41 km/h
Answer: 20 m/s
Explanation: To solve this problem we have to consider the expression of the kinetic energy given by:
Ekinetic=(1/2)*(m*v^2)
then E=0.5*30Kg*(20 m/s)^2=15*400=6000J
Answer
given,
Side of copper plate, L = 55 cm
Electric field, E = 82 kN/C
a) Charge density,σ = ?
using expression of charge density
σ = E x ε₀
ε₀ is Permittivity of free space = 8.85 x 10⁻¹² C²/Nm²
now,
σ = 82 x 10³ x 8.85 x 10⁻¹²
σ = 725.7 x 10⁻⁹ C/m²
σ = 725.7 nC/m²
change density on the plates are 725.7 nC/m² and -725.7 nC/m²
b) Total change on each faces
Q = σ A
Q = 725.7 x 10⁻⁹ x 0.55²
Q = 219.52 nC
Hence, charges on the faces of the plate are 219.52 nC and -219.52 nC
Ok. PEMDAS tells us to take care of the square first. When we do that, the denominator becomes
(6.4)^2 x 10^12
= 40.96 x 10^12 .
Now it's just a matter of mashing out the fraction.
The 'mantissa' (the number part) is
6/40.96 = 0.1465
and the order of magnitude is
10^24 / 10^12 = 10^12 .
Put it all together and you've got
1.465 x 10^11 .