Answer is: dispersion forces.
The London dispersion force is the weakest intermolecular force.
Dispersion force is also called an induced dipole-induced dipole attraction.
The London dispersion force (intermolecular force) is a temporary attractive force between molecules.
The dipole beetween iodine and bromine is weak.
<span>Answer is: atomic number
of resulting atom is 88.
Alpha particle is nucleus of a helium-4 atom, which is made of
two protons and two neutrons.
Nuclear reaction: ²³</span>²Th → ²²⁸Ra + α (alpha
particle).
Alpha
decay is radioactive decay in which an atomic
nucleus emits an alpha particle (helium nucleus) and transforms
into an atom with an atomic number that is reduced by
two and mass number that is reduced by four.
The balanced equation for the reaction between KOH and HBr is as follows;
KOH + HBr --> KBr + H₂O
stoichiometry of KOH to HBr is 1:1
number of KOH moles reacted - 0.25 mol/L x 0.015 L = 0.00375 mol
according to molar ration
number of KOH moles reacted = number of HBr moles reacted
number of HBr moles reacted - 0.00375 mol
if 12 mL of HBr contains - 0.00375 mol
then 1000 mL of HBr contains - 0.00375 mol / 12 mL x 1000 mL = 0.313 mol
therefore molarity of HBr is 0.313 M
Answer:
I. The balloon has a volume of 22.4L
III. The balloon contains 6.022x10^23 molecules.
Explanation:
At stp, it has been proven that 1mole of a gas occupy 22.4L.
Therefore, option (i) is correct.
The molar mass N2 = 14.01 x 2 = 28.02g/mol
Number of mole of N2 = 1 mole
Mass of N2 =..?
Mass = mole x molar Mass
Mass of N2 = 1 x 28.02 = 28.02g.
The mass content of the balloon is 28.02g, therefore, option (ii) is wrong.
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02x10^23 molecules. This implies that 1 mole of N2 also contains 6.02x10^23 molecules
Therefore, option (iii) is correct.
The correct options to the question are:
Option i and option iii