The given question is incomplete. The complete question is :
It takes 151 kJ/mol to break an iodine-iodine single bond. Calculate the maximum wavelength of light for which an iodine-iodine single bond could be broken by absorbing a single photon. Be sure your answer has the correct number of significant digits.
Answer: 793 nm
Explanation:
The relation between energy and wavelength of light is given by Planck's equation, which is:
where,
E = energy of the light = 151 kJ= 151000 J (1kJ=1000J)
N= moles = 1 =
h = Planck's constant =
c = speed of light =
= wavelength of light = ?
Putting in the values:
Thus the maximum wavelength of light for which an iodine-iodine single bond could be broken by absorbing a single photon is 793 nm
There are 6 atoms of oxygen on the reactant side of the following equation: 2Fe2O3 + 3C → 4Fe + 3CO2. Details about atoms can be found below.
<h3>How to find number of atoms?</h3>
The number of atoms of an element in a balanced equation is the amount of that element involved in the reaction.
According to this question, Iron oxide reacts with carbon to produce iron and carbon dioxide as follows:
2Fe2O3 + 3C → 4Fe + 3CO2
In this reaction, 2 × 3 atoms = 6 atoms of oxygen are present on the reactant side of the equation.
Learn more about number of atoms at: brainly.com/question/8834373
#SPJ1
Replicating experiments
(If u don’t mind can y mark me brainiest it would really help :) )
A neutron is neutral and a proton is positive and a electron is negative