Using the 3rd equation of motion:
= v² - u² = 2gs ------ [g = Acceleration due to gravity]
= v² - 20² = 2 × 10 × 300
= v² - 400 = 6000
= v² = 6000 - 400
= v = √5600
= v = 74.83 m/s
And yeah it's done :)
Answer:if youre looking for the weight of the thermas in genral it should be 500n
Explanation:using the formula w=mg
w=500x10
giving us 500 newtons which is the weight.
Answer:
The magnitude of the force required to move the electron through the given field is 2.203 N
Explanation:
Given;
The field strength of the electron, E = 1.375 x 10¹⁹ N/C
charge of electron, q = 1.602 x 10⁻¹⁹ C
The magnitude of the force required to move the electron through the given field is calculated as follows;
F = Eq
F = (1.375 x 10¹⁹ N/C) (1.602 x 10⁻¹⁹ C)
F = 2.203 N
Therefore, the magnitude of the force required to move the electron through the given field is 2.203 N
To establish the age of a rock or a fossil, researchers use some type of clock to determine the date it was formed. Geologists commonly use radiometric dating methods, based on the natural radioactive decay of certain elements such as potassium and carbon, as reliable clocks to date ancient events.
A group of cells together