The potential energy is most often referred to as the "energy at rest" and is dependent on the elevation of an object. This can be calculated through the equation,
E = mgh
where E is the potential energy, m is the mass, g is the acceleration due to gravity, and h is the height. In this item, we are not given with the mass of the cart so we assume it to be m. The force is therefore,
E = m(9.8 m/s²)(0.5 m) = 4.9m
Hence, the potential energy is equal to 4.9m.
Answer:

Explanation:
Given data
Force F=599 N
Angle α=40.8°
To find
x scalar component
Solution
The Scalar x component can be found by
The Scalar y component can be found by

Answer:
+1.46×10¯⁶ C
Explanation:
From the question given above, the following data were obtained:
Charge 1 (q₁) = +26.3 μC = +26.3×10¯⁶ C
Force (F) = 0.615 N
Distance apart (r) = 0.750 m
Electrical constant (K) = 9×10⁹ Nm²/C²
Charge 2 (q₂) =?
The value of the second charge can be obtained as follow:
F = Kq₁q₂ / r²
0.615 = 9×10⁹ × 26.3×10¯⁶ × q₂ / 0.750²
0.615 = 236700 × q₂ / 0.5625
Cross multiply
236700 × q₂ = 0.615 × 0.5625
Divide both side by 236700
q₂ = (0.615 × 0.5625) / 236700
q₂ = +1.46×10¯⁶ C
NOTE: The force between them is repulsive as stated from the question. This means that both charge has the same sign. Since the first charge has a positive sign, the second charge also has a positive sign. Thus, the value of the second charge is +1.46×10¯⁶ C
Answer:

Explanation:
The fusion reaction in this problem is

The total energy released in the fusion reaction is given by

where
is the speed of light
is the mass defect, which is the mass difference between the mass of the reactants and the mass of the products
For this fusion reaction we have:
is the mass of one nucleus of hydrogen
is the mass of one nucleus of helium
So the mass defect is:

The conversion factor between atomic mass units and kilograms is

So the mass defect is

And so, the energy released is:

Copper is; unlike iron and steel; not ferromagnetic, but diamagnetic. This means that induced magnetic fields in copper will counter the applied force.
When you drop a strong magnet through a copper pipe, the moving magnetic field will induce currents (Lenz’ Law). These currents will now induce their own magnetic field. This magnetic field counters the falling magnetic.
Result: the magnet will fall way slower than if it was falling through a plastic pipe.