1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vinvika [58]
3 years ago
12

Vector vector b has x, y, and z components of 4.00, 4.00, and 2.00 units, respectively. calculate the magnitude of vector

Physics
1 answer:
Sav [38]3 years ago
7 0
Good morning.

We see that \mathsf{\overset{\to}{b}} = \mathsf{(4.00, \ 4.00, \ 2.00)}

The magnitude(norm, to be precise) can be calculated the following way:

\star \ \boxed{\mathsf{\overset{\to}{a}=(x, y,z)\Rightarrow ||\overset{\to}{a}|| = \sqrt{x^2+y^2+z^2}}}


Now the calculus is trivial:

\mathsf{\|\overset{\to}{b} \| =\sqrt{4^2+4^2+2^2} =\sqrt{16+16+4}}\\ \\ \mathsf{\|\overset{\to}{b}\|=\sqrt{36}}\\ \\ \boxed{\mathsf{\|\overset{\to}{b}\| = 6.00 \ u}}
You might be interested in
A 60kg bicyclist (including the bicycle) is pedaling to the
Fittoniya [83]

a) 4 forces

b) 186 N

c) 246 N

Explanation:

a)

Let's count the forces acting on the bicylist:

1) Weight (W=mg): this is the gravitational force exerted on the bicyclist by the Earth, which pulls the bicyclist towards the Earth's centre; so, this force acts downward (m = mass of the bicyclist, g = acceleration due to gravity)

2) Normal reaction (N): this is the reaction force exerted by the road on the bicyclist. This force acts vertically upward, and it balances the weight, so its magnitude is equal to the weight of the bicyclist, and its direction is opposite

3) Applied force (F_A): this is the force exerted by the bicylicist to push the bike forward. Its direction is forward

4) Air drag (R): this is the force exerted by the air on the bicyclist and resisting the motion of the bike; its direction is opposite to the motion of the bike, so it is in the backward direction

So, we have 4 forces in total.

b)

Here we can find the net force on the bicyclist by using Newton's second law of motion, which states that the net force acting on a body is equal to the product between the mass of the body and its acceleration:

F_{net}=ma

where

F_{net} is the net force

m is the mass of the body

a is its acceleration

In this problem we have:

m = 60 kg is the mass of the bicyclist

a=3.1 m/s^2 is its acceleration

Substituting, we find the net force on the bicyclist:

F_{net}=(60)(3.1)=186 N

c)

We can write the net force acting on the bicyclist in the horizontal direction as the resultant of the two forces acting along this direction, so:

F_{net}=F_a-R

where:

F_{net} is the net force

F_a is the applied force (forward)

R is the air drag (backward)

In this problem we have:

F_{net}=186 N is the net force (found in part b)

R=60 N is the magnitude of the air drag

Solving for F_a, we find the force produced by the bicyclist while pedaling:

F_a=F_{net}+R=186+60=246 N

3 0
2 years ago
An electric field of 3x10^16 n/c is needed to create a spark in the air. If the charged particles in the field are separated by
meriva
The answer of this problem is positive 3
6 0
3 years ago
A cylinder of diameter 100 mm rolls from restdown a 5 m long ramp and its center of mass is moving with velocity 2 m/s at the bo
RoseWind [281]

Answer:

(a): a = 0.4m/s²

(b): α = 8 radians/s²

Explanation:

First we propose an equation to determine the linear acceleration and an equation to determine the space traveled in the ramp (5m):

a= (Vf-Vi)/t = (2m/s)/t

a: linear acceleration.

Vf: speed at the end of the ramp.

Vi: speed at the beginning of the ramp (zero).

d= (1/2)×a×t² = 5m

d: distance of the ramp (5m).

We replace the first equation in the second to determine the travel time on the ramp:

d = 5m = (1/2)×( (2m/s)/t)×t² = (1m/s)×t ⇒ t = 5s

And the linear acceleration will be:

a = (2m/s)/5s = 0.4m/s²

Now we determine the perimeter of the cylinder to know the linear distance traveled on the ramp in a revolution:

perimeter = π×diameter = π×0.1m = 0.3142m

To determine the angular acceleration we divide the linear acceleration by the radius of the cylinder:

α = (0.4m/s²)/(0.05m) = 8 radians/s²

α: angular aceleration.

3 0
3 years ago
The universe could be considered an isolated system because
Stolb23 [73]

Answer:

A(many people think that no energy or matter exists outside the universe)

Explanation:

4 0
3 years ago
An object can have forces acting upon it, but might not accelerate<br><br> True<br> or<br> False?
vivado [14]

Answer:

true

Explanation:

if you apply force to the top of a square it will not move

8 0
2 years ago
Other questions:
  • A professor designing a class demonstration connects a parallel-plate capacitor to a battery, so that the potential difference b
    9·1 answer
  • Psychologists working from the humanistic perspective help people do all of the following except
    7·1 answer
  • An object weighing 4 newtons swings on the end of a string as a simple pendulum. At the bottom of the swing, the tension in the
    9·2 answers
  • The weight of a person is 500N and his foot imprint area is 0.5m^2.Calculate the total pressure exerted by person when he stands
    10·1 answer
  • A particle initially at rest moves along in a line so that its acceleration is a(t) = 10/(t+1) for t&gt;=0.
    12·1 answer
  • What color is mercury
    5·2 answers
  • The mass of a certain neutron star is 2.5x10^30kg and the radius 7000m. what is the force of gravity on a 1kg object of the surf
    10·1 answer
  • What occurs during stage one sleep
    5·1 answer
  • Potassium has an atomic number
    5·2 answers
  • An object has a moving energy of 25 J. If I do 25 J of work on the object, how much energy does it have now?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!