Explanation:
Show that the motion of a mass attached to the end of a spring is SHM
Consider a mass "m" attached to the end of an elastic spring. The other end of the spring is fixed
at the a firm support as shown in figure "a". The whole system is placed on a smooth horizontal surface.
If we displace the mass 'm' from its mean position 'O' to point "a" by applying an external force, it is displaced by '+x' to its right, there will be elastic restring force on the mass equal to F in the left side which is applied by the spring.
According to "Hook's Law
F = - Kx ---- (1)
Negative sign indicates that the elastic restoring force is opposite to the displacement.
Where K= Spring Constant
If we release mass 'm' at point 'a', it moves forward to ' O'. At point ' O' it will not stop but moves forward towards point "b" due to inertia and covers the same displacement -x. At point 'b' once again elastic restoring force 'F' acts upon it but now in the right side. In this way it continues its motion
from a to b and then b to a.
According to Newton's 2nd law of motion, force 'F' produces acceleration 'a' in the body which is given by
F = ma ---- (2)
Comparing equation (1) & (2)
ma = -kx
Here k/m is constant term, therefore ,
a = - (Constant)x
or
a a -x
This relation indicates that the acceleration of body attached to the end elastic spring is directly proportional to its displacement. Therefore its motion is Simple Harmonic Motion.
Only within the same technology. / / /
If both of the bulbs you're comparing are incandescent, or both fluorescent, or both CFL, or both LED, then the one that uses more power is brighter. But a CFL with the same brightness as an incandescent bulb uses less power, and an LED bulb with the same brightness as both of those uses less power than either of them.
The change in velocity is 5m/s which added to the initial 3m/s makes the final velocity 8m/s
Distance = (3*5) + (1/2*1*5^2)= 15+12.5= 27.5m
The correct is Reverberation. A reverberation is created when a sound or signal is reflected causing a large number of reflections to build up and then decay as the sound is absorbed by the surfaces of objects in the space – which could include furniture, people, and air.
Answer:
The mass of the bat is 1.09 kg.
Explanation:
Given that,
The balance point of the glove, x = 74.9 cm
Mass of the glove, m = 0.56 kg
Center of mass of the baseball bat, C = 25.3 cm
Let M is the mass of the bat. The center of mass is given by the formula as :
X is 0 as it is at a end
M = 1.09 kg
So, the mass of the bat is 1.09 kg. Hence, this is the required solution.