I think that it would help him so it can slide and help him move his furniture faster
Answer:
v = -v₀ / 2
Explanation:
For this exercise let's use kinematics relations.
Let's use the initial conditions to find the acceleration of the electron
v² = v₀² - 2a y
when the initial velocity is vo it reaches just the negative plate so v = 0
a = v₀² / 2y
now they tell us that the initial velocity is half
v’² = v₀’² - 2 a y’
v₀ ’= v₀ / 2
at the point where turn v = 0
0 = v₀² /4 - 2 a y '
v₀² /4 = 2 (v₀² / 2y) y’
y = 4 y'
y ’= y / 4
We can see that when the velocity is half, advance only ¼ of the distance between the plates, now let's calculate the velocity if it leaves this position with zero velocity.
v² = v₀² -2a y’
v² = 0 - 2 (v₀² / 2y) y / 4
v² = -v₀² / 4
v = -v₀ / 2
We can see that as the system has no friction, the arrival speed is the same as the exit speed, but with the opposite direction.
Answer:
it's made of land, rocks, water and many more
Explanation:
if you think about it, mountains are just giant rocks. and the ocean is water and land is... well land
Answer: - 7500N
Explanation:
Given the following :
Initial Velocity of car = 108km/hr
Time taken to stop after applying brakes = 4s
Mass of passengers in car = 1000kg
Force exerted by the brakes on the car =?
After 4s, then final Velocity (V) = 0
Initial Velocity (u) of the car = 108km/hr
108km/hr = (108 × 1000)m ÷ (3600)s = 30m/s
Force exerted = mass(m) × acceleration(a)
Acceleration of car = Change in Velocity with time
a = (v - u) / t
a = (0 - 30) / 4
a = - 30/ 4
a = - 7.5m/s^2
Therefore,
Force exerted = mass(m) × acceleration(a)
Force exerted = 1000kg × (-7.5)m/s^2
Force exerted = - 7500N