The answer is:
B. <span>X: Work is done to the system and temperature increases.
Y: Work is done by the system and temperature decreases.</span>
Answer:
<em> think 2 also if not im so sorry but i think it is :)</em>
Answer:
h = 3.5 m
Explanation:
First, we will calculate the final speed of the ball when it collides with a seesaw. Using the third equation of motion:

where,
g = acceleration due to gravity = 9.81 m/s²
h = height = 3.5 m
vf = final speed = ?
vi = initial speed = 0 m/s
Therefore,

Now, we will apply the law of conservation of momentum:

where,
m₁ = mass of colliding ball = 3.6 kg
m₂ = mass of ball on the other end = 3.6 kg
v₁ = vf = final velocity of ball while collision = 8.3 m/s
v₂ = vi = initial velocity of other end ball = ?
Therefore,

Now, we again use the third equation of motion for the upward motion of the ball:

where,
g = acceleration due to gravity = -9.81 m/s² (negative for upward motion)
h = height = ?
vf = final speed = 0 m/s
vi = initial speed = 8.3 m/s
Therefore,

<u>h = 3.5 m</u>
Yes that is correct or in other form, True
Answer:
8 KJ/ s
Explanation:
Heat pumps Transfer thermal energy through absorbing of heat that comes from cold region and then release to warmer area by utilizing external power.
The coefficient of performance known as COP provide the ratio of both heating and cooling that are supplied to required work.
✓QH=The rate at which heat is produced = ?
✓COP= Coefficient of performance of a residential heat pump = 1.6
✓ W(in)= power consumption= 5KW
QH=The rate at which heat is produced=[Coefficient of performance of a residential heat pump] × [power consumption]
= 1.6 × 5KW
=8 KJ/ s