Answer:
She must stop the car before interception, distance traveled 12.66 m
Explanation:
We will take all units to the SI system
Vo = 48Km / h (1000m / 1Km) (1h / 3600s) = 13.33 m / s
V2 = 70 Km / h = 19.44 m / s
We calculate the distance traveled before stopping
X = Vo t + ½ to t²
Time is what it takes traffic light to turn red is t = 2.0 s
X = 13.33 2 + 1.2 (-7) 2²
X = 12.66 m
It stops car before reaching the traffic light turning to red
Let's analyze what happens if you accelerate, let's calculate the acceleration of the vehicle
V2 = Vo + a t2
a = (V2-Vo) / t2
a = (19.44-13.33) /6.6
a = 0.926 m / s2
This is the acceleration to try to pass the interception, now let's calculate the distance it travels in the time the traffic light changes from yellow to red (t = 2.0 s)
X = Vo t + ½ to t²
X = 13.33 2 + ½ 0.926 2²
X = 28.58 m
Since the vehicle was 30 m away, the interception does not happen
Answer:
1340.2MW
Explanation:
Hi!
To solve this problem follow the steps below!
1 finds the maximum maximum power, using the hydraulic power equation which is the product of the flow rate by height by the specific weight of fluid
W=αhQ
α=specific weight for water =9.81KN/m^3
h=height=220m
Q=flow=690m^3/s
W=(690)(220)(9.81)=1489158Kw=1489.16MW
2. Taking into account that the generator has a 90% efficiency, Find the real power by multiplying the ideal power by the efficiency of the electric generator
Wr=(0.9)(1489.16MW)=1340.2MW
the maximum possible electric power output is 1340.2MW
Explanation:
It is known that relation between torque and angular acceleration is as follows.

and, I = 
So, 
= 4 


So, 
= 1 
as 
=
Hence, 

Thus, we can conclude that the new rotation is
times that of the first rotation rate.
Answer:
A. That enough light of any frequency would cause electrons to flow.
Explanation:
A P E X
The meter out circuit is the flow control circuit design that can most effectively control an overrunning load.
The meter-out circuit can be very accurate, but are not efficient. The meter-out circuit can control overrunning as well as opposing loads while the other one method must be used with opposing loads only. The choice of flown control valve method and the location of the flow control in the circuit are dependent on the type of application being controlled.
<h3>What is a Circuit ?</h3>
In electronics, a circuit is a complete circular conduit through which electricity flows. A simple circuit consists of conductors, a load, and a current source. The term "circuit" broadly refers to any continuous path via which electricity, data, or a signal might flow.
- The directional valve shifts, causing the actuator to move faster than pump flow can fill it due to an overrunning load. Oil is leaking from one side, whereas there is none on the other.
Hence, flow control circuit design that can best control an overrunning load is the opposing circuit
Learn more about Circuit here:
brainly.com/question/26064065
#SPJ4