Two light waves will interfere constructively if the path-length difference between them is a whole number.
<h3>
SUPERPOSITION</h3>
The principle of superposition state that, when two or more waves meet at a point, the resultant displacement at that point is equal to the sum of the displacements of the individual waves at that point.
Interference of waves can either be constructive, or destructive.
The two light waves, initially emitted in phase, will interfere constructively with maximum amplitude if the path-length difference between them is a whole number of wavelenght 1λ, 2λ, 3λ, 4λ etc
The equivalent phase differences between the waves will be 2
or 360 degrees, 4
or 720 degrees, 6
1080 degrees etc
Therefore, the two light waves, initially emitted in phase, will interfere constructively with maximum amplitude if the path-length difference between them is a whole number.
Learn more about Interference here: brainly.com/question/25310724
Answer:
16.96 W
Explanation:
Power: This can be defined as the rate at which work is done by an object. The S.I unit of power is Watt(W).
From the question,
P = (F×d)/t....................... Equation 1
Where P = power, F = force, d = distance, t = time.
Given: F = 75 N, d = 42 m, t = 3.1 min = 3.1×60 = 186 s
Substitute these values into equation 1
P = (75×42)/186
P = 16.94 W
Hence the average power delivered by the child = 16.96 W
Answer:
21 m
Explanation:
The motion of the frog is a uniform motion (constant speed), therefore we can find the distance travelled by using

where
d is the distance covered
v is the speed
t is the time
The frog in this problem has a speed of
v = 2.1 m/s
and therefore, after t = 10 s, the distance it covered is

Find the force that would be required in the absence of friction first, then calculate the force of friction and add them together. This is done because the friction force is going to have to be compensated for. We will need that much more force than we otherwise would to achieve the desired acceleration:

The friction force will be given by the normal force times the coefficient of friction. Here the normal force is just its weight, mg

Now the total force required is:
0.0702N+0.803N=0.873N