The rock it traveling really, really fast.
It is hard to exactly determine how fast bc u need the height of the cliff and how big the rock is.
Hope this helps and can I get brainliest answer!
Answer:
0.8 seconds
Explanation:
F=ma
Let x be the seconds the force is applied.
m = 20kg
F = 50 Newtons (kg*m/sec^2)
acceleration, a, is provided for x seconds to increase the speed from 1 m/s to 3 m/s, an increase of 2m/s
Let's calculate the acceleration of the cart:
F=ma
(50 kg*m/s^2) = (20kg)*a
a = 2.5 m/s^2
---
The acceleration is 2.5 m/s^2. The cart increases speed by 2.5 m/s every second.
We want the number of seconds it takes to add 2.0 m/sec to the speed:
(2.5 m/s^2)*x = 2.0 m/s
x = (2.0/2.5) sec
x = 0.8 seconds
Answer:
The car that is accelerating is B a car that rounds a curve at a constant speed
Explanation:
Although all of the cars are at a constant speed or not moving acceleration is the change in speed or the change of directions therefore making the only car changing directions your answer.
Answer:
Final Length = 30 cm
Explanation:
The relationship between the force applied on a string and its stretching length, within the elastic limit, is given by Hooke's Law:
F = kΔx
where,
F = Force applied
k = spring constant
Δx = change in length of spring
First, we find the spring constant of the spring. For this purpose, we have the following data:
F = 50 N
Δx = change in length = 25 cm - 20 cm = 5 cm = 0.05 m
Therefore,
50 N = k(0.05 m)
k = 50 N/0.05 m
k = 1000 N/m
Now, we find the change in its length for F = 100 N:
100 N = (1000 N/m)Δx
Δx = (100 N)/(1000 N/m)
Δx = 0.1 m = 10 cm
but,
Δx = Final Length - Initial Length
10 cm = Final Length - 20 cm
Final Length = 10 cm + 20 cm
<u>Final Length = 30 cm</u>
Answer:
1.64 * 10^(-5) m
Explanation:
Parameters given:
Angular separation, θ = 0.018 rad
Wavelength, λ = 589 nm = 5.89 * 10^(-7) m
The angular separation when there are 2 slots is given as
θ = λ/2d
where d = separation between slits
d = λ/2θ
d = (589 * 10^(-9))/(2 * 0.018)
d = 1.64 * 10^(-5) m