To solve this we assume
that the gas inside the balloon is an ideal gas. Then, we can use the ideal gas
equation which is expressed as PV = nRT. At a constant pressure and number of
moles of the gas the ratio T/V is equal to some constant. At another set of
condition of temperature, the constant is still the same. Calculations are as
follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 =284.15 x 2.50 / 303.15
<span>V2 = 2.34 L</span>
Explanation:
An electrified comb is charged comb ( let say by running it through the hair) and when it is brought in the proximity of pieces of paper, the pieces tend to cling to it. This happens because the charged comb induces an opposite charge in the paper pieces and as opposite charges attract each other, the pieces are clinged.
The heat capacity and the specific heat are related by C=cm or c=C/m. The mass m, specific heat c, change in temperature ΔT, and heat added (or subtracted) Q are related by the equation: Q=mcΔT. Values of specific heat are dependent on the properties and phase of a given substance.
A. 14.59 is correctly rounded to 4 significant digits.
Answer:
a
The hiker (you ) is 200 m below his/her(your) starting point
b
The resultant displacement in the north east direction is

The resultant displacement in vertical direction (i.e the altitude change )

Explanation:
From the question we are told that
The displacement in the morning is 
The displacement in the afternoon is 
Generally the direction west is negative , the direction east is positive
the direction south is negative , the direction north is positive
resultant displacement is mathematically evaluated as



From the above calculation we see that at the end of the hiking the hiker (you) is 200 m below his/her(your) initial position
Generally from Pythagoras theorem , the resultant displacement in the north east direction is

=> 
Generally from Pythagoras theorem , the resultant displacement in vertical direction (i.e the altitude change )

=> 