Answer:
55.80s
Explanation:
Power is calculated using the expression
Power = Work done/Time
Workdone= Force ×distance
Workdone = 794×22
Work done = 17468Joules
From the power formula
Time = Workdone/Power
Time = 17468/313
Time = 55.80seconds
The elevator takes 55.80seconds to life the Taylor
The first: alright, first: you draw the person in the elevator, then draw a red arrow, pointing downwards, beginning from his center of mass. This arrow is representing the gravitational force, Fg.
You can always calculate this right away, if you know his mass, by multiplying his weight in kg by the gravitational constant

let's do it for this case:

the unit of your fg will be in Newton [N]
so, first step solved, Fg is 637.65N
Fg is a field force by the way, and at the same time, the elevator is pushing up on him with 637.65N, so you draw another arrow pointing upwards, ending at the tip of the downwards arrow.
now let's calculate the force of the elevator

so you draw another arrow which is pointing downwards on him, because the elevator is accelating him upwards, making him heavier
the elevator force in this case is a contact force, because it only comes to existence while the two are touching, while Fg is the same everywhere
v = √ { 2*(KE) ] / m } ;
Now, plug in the known values for "KE" ["kinetic energy"] and "m" ["mass"] ;
and solve for "v".
______________________________________________________
Explanation:
_____________________________________________________
The formula is: KE = (½) * (m) * (v²) ;
_____________________________________
"Kinetic energy" = (½) * (mass) * (velocity , "squared")
________________________________________________
Note: Velocity is similar to speed, in that velocity means "speed and direction"; however, if you "square" a negative number, you will get a "positive"; since: a "negative" multiplied by a "negative" equals a "positive".
____________________________________________
So, we have the formula:
___________________________________
KE = (½) * (m) * (v²) ; to solve for "(v)" ; velocity, which is very similar to the "speed";
___________________________________________________
we arrange the formula ;
__________________________________________________
(KE) = (½) * (m) * (v²) ; ↔ (½)*(m)* (v²) = (KE) ;
___________________________________________________
→ We have: (½)*(m)* (v²) = (KE) ; we isolate, "m" (mass) on one side of the equation:
______________________________________________________
→ We divide each side of the equation by: "[(½)* (m)]" ;
___________________________________________________
→ [ (½)*(m)*(v²) ] / [(½)* (m)] = (KE) / [(½)* (m)]<span> ;
</span>______________________________________________________
to get:
______________________________________________________
→ v² = (KE) / [(½)* (m)]
→ v² = 2 KE / m
_______________________________________________________
Take the "square root" of each side of the equation ;
_______________________________________________________
→ √ (v²) = √ { 2*(KE) ] / m }
________________________________________________________
→ v = √ { 2*(KE) ] / m } ;
Now, plug in the known values for "KE" ["kinetic energy"] and "m" ["mass"];
and solve for "v".
______________________________________________________
The amount of heat energy required to raise the temperature of a unit mass of a material to one degree is called D. its heat capacity.
The relationship of the heat when applied to the object and the change in temperature of the object when heat is being applied is directly proportional to each other. This means that when heat is applied to the object, the temperature of the object increases and when heat is not applied to the object, the temperature of the object decreases.