1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleonysh [2.5K]
3 years ago
11

How strong is the electric field between the plates of a 0.86 µf air-gap capacitor if they are 2.0 mm apart and each has a char

ge of 64 µc?
Physics
1 answer:
Gala2k [10]3 years ago
7 0
The electric field between the plates is equal to the potential difference across the plates divided by the separation of the plates.
The potential difference across the plates is equal to the charge stored divided by the capacitance.
You might be interested in
The answer to number 9 please
Delicious77 [7]
The magnitude is doubled. The direction doesn't change.
7 0
3 years ago
A beam of light, with a wavelength of 4170 Å, is shined on sodium, which has a work function (binding energy) of 4.41 × 10 –19 J
Lyrx [107]

Explanation:

Given that,

Wavelength of the light, \lambda=4170\ A=4170\times 10^{-10}\ m

Work function of sodium, W_o=4.41\times 10^{-19}\ J

The kinetic energy of the ejected electron in terms of work function is given by :

KE=h\dfrac{c}{\lambda}-W_o\\\\KE=6.63\times 10^{-34}\times \dfrac{3\times 10^8}{4170\times 10^{-10}}-4.41\times 10^{-19}\\\\KE=3.59\times 10^{-20}\ J

The formula of kinetic energy is given by :

KE=\dfrac{1}{2}mv^2\\\\v=\sqrt{\dfrac{2KE}{m}} \\\\v=\sqrt{\dfrac{2\times 3.59\times 10^{-20}}{9.1\times 10^{-31}}} \\\\v=2.8\times 10^5\ m/s

Hence, this is the required solution.

7 0
3 years ago
A slinky forms it’s third harmonic standing wave when the input frequency is 24 Hz. What is the fundamental frequency of the sli
jarptica [38.1K]

Answer: The fundamental frequency of the slinky = 8Hz

An input frequency of 28 Hz will not create a standing wave

Explanation:

Let Fo = fundamental frequency

At third harmonic,

F = 3Fo

If F = 24Hz

24 = 3Fo

Fo = 24/3 = 8Hz

If an input frequency = 28 Hz at 3rd harmonic

Let find the fundamental frequency

28 = 3Fo

Fo = 28/3

Fo = 9.33333Hz

Since Fo isn't a whole number, it can't create a standing wave

6 0
4 years ago
Suppose you had the same laser and diffraction grating from the previous question but now you had a flat detection screen. You w
kolezko [41]

Answer:

measuring the zero intensity point, we can deduce the movement of the screen.

The distance from the center of the pattern to the first zero is proportional to the distance to the screen,

Explanation:

The expression for the diffraction phenomenon is

           a sin θ = m λ

for the case of destructive interference. In general the detection screen is quite far from the grid, let's use trigonometry to find the angles

           tan θ = y / L

     

in these experiments the angles are small

          tan θ = sin θ / cos θ = sin θ

          sunt θ = y / L

we substitute

          a \frac{y}{L}= m  λ

           y = m L λ / a

therefore, by carefully measuring the zero intensity point, we can deduce the movement of the screen.

 

The distance from the center of the pattern to the first zero is proportional to the distance to the screen, so you can know where the displacement occurs, it should be clarified that these displacements are very small so the measurement system must be capable To measure quantities on the order of hundredths of a millimeter, a micrometer screw could be used.

4 0
3 years ago
In a shipping company distribution center, an open cart of mass 50.0 kg is rolling to the left at a speed of 5.00 m/s. Ignore fr
spin [16.1K]

Answer:

a) v_p=9.35m/s

Explanation:

From the question we are told that:

Open cart of mass   M_o=50.0 kg

Speed of cart   V=5.00m/s

Mass of package   M_p=15.0kg

Speed of package at end of chute V_c=3.00m/s

Angle of inclination   \angle =37

Distance of chute from bottom of cart   d_x=4.00m

a)

Generally the equation for work energy theory is mathematically given by

  \frac{1}{2}mu^2+mgh=\frac{1}{2}mv_p^2

Therefore

  \frac{1}{2}u^2+gh=\frac{1}{2}v_p^2

  v_p=\sqrt{2(\frac{1}{2}u^2+gh)}

  v_p=\sqrt{2(\frac{1}{2}v_c^2+gd_x)}

  v_p=\sqrt{2(\frac{1}{2}(3)^2+(9.8)(4))}

  v_p=9.35m/s

4 0
3 years ago
Other questions:
  • The motion of an object parallel to the earth's surface is
    12·1 answer
  • You may remember getting toys for Christmas or your birthdays that your parents had to assemble. One such toy requires the use o
    8·1 answer
  • Gamma rays x rays visible light and radio waves are all types of
    8·1 answer
  • The potential difference between two points is 100 V. If a particle with a charge of 2 C is transported from one of these points
    8·2 answers
  • Estimate the mass of the Great Pyramid of Giza, in tons. You make may use of the following information: the Great Pyramid is in
    10·1 answer
  • The process by which a cell captures the energy in sunlight and uses it to make food is called
    9·2 answers
  • The key to making a concise mathematical definition of escape velocity is to consider the energy. If an object is launched at it
    7·1 answer
  • Which of the following is a major ocean on Earth?
    14·2 answers
  • Is the unit of measurement that is the average distance between the center of the Sun and the center of the Earth.
    5·1 answer
  • If your average is 3.37m/a what distance would you travel in 82s? round to the nearest thousandth
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!