The magnitude is doubled. The direction doesn't change.
Explanation:
Given that,
Wavelength of the light, 
Work function of sodium, 
The kinetic energy of the ejected electron in terms of work function is given by :

The formula of kinetic energy is given by :

Hence, this is the required solution.
Answer: The fundamental frequency of the slinky = 8Hz
An input frequency of 28 Hz will not create a standing wave
Explanation:
Let Fo = fundamental frequency
At third harmonic,
F = 3Fo
If F = 24Hz
24 = 3Fo
Fo = 24/3 = 8Hz
If an input frequency = 28 Hz at 3rd harmonic
Let find the fundamental frequency
28 = 3Fo
Fo = 28/3
Fo = 9.33333Hz
Since Fo isn't a whole number, it can't create a standing wave
Answer:
measuring the zero intensity point, we can deduce the movement of the screen.
The distance from the center of the pattern to the first zero is proportional to the distance to the screen,
Explanation:
The expression for the diffraction phenomenon is
a sin θ = m λ
for the case of destructive interference. In general the detection screen is quite far from the grid, let's use trigonometry to find the angles
tan θ = y / L
in these experiments the angles are small
tan θ = sin θ / cos θ = sin θ
sunt θ = y / L
we substitute
a
= m λ
y = m L λ / a
therefore, by carefully measuring the zero intensity point, we can deduce the movement of the screen.
The distance from the center of the pattern to the first zero is proportional to the distance to the screen, so you can know where the displacement occurs, it should be clarified that these displacements are very small so the measurement system must be capable To measure quantities on the order of hundredths of a millimeter, a micrometer screw could be used.
Answer:
a) 
Explanation:
From the question we are told that:
Open cart of mass 
Speed of cart 
Mass of package 
Speed of package at end of chute 
Angle of inclination 
Distance of chute from bottom of cart 
a)
Generally the equation for work energy theory is mathematically given by

Therefore




