Given required solution
M=10kg W=? W=Fd
v=5.0m/s F=mg
t=2.40s =10*10=100N
S=VT
=5m/s*2.4s
=12m
so W=12*100
W=1200J
Kinetic energy = (1/2) (mass) (speed)²
The rock's kinetic energy is not
(1/2) (4 kg) (10 m/s)²
= (1/2) (4 kg) (100 m²/s²)
= 200 Joules .
It may be more, or it may be less. The only thing
we can be sure of is that it is not 200 Joules.
Using the pressure law (P1 x V1)/ T1 = (P2 x V2)/ T2 where P1= the initial pressure V1= initial volume T1= initial temperature and P2= the final pressure V2= the final volume T2 = the final temperature and temperature is always in kelvin
Answer:
energy carried by the current is given by the pointyng vector
Explanation:
The current is defined by
i = dQ / dt
this is the number of charges per unit area over time.
The movement of the charge carriers (electrons) is governed by the applied potential difference, when the filament has a movement the drag speed of these moving electrons should change slightly.
But the energy carried by the current is given by the pointyng vector of the electromagnetic wave
S = 1 / μ₀ EX B
It moves at the speed of light and its speed depends on the properties of the doctor and is not disturbed by small changes in speed, therefore the current in the circuit does not change due to this movement