Answer:
V₁ = 374.71 mL
Explanation:
Given data:
Initial volume of gas= ?
Initial temperature = 22°C
Final temperature = 86°C
Final volume = 456 mL
Solution:
Initial temperature = 22°C (22+273 = 295 k)
Final temperature = 86°C (86+273 = 359 k)
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₁ = V₂T₁ /T₂
V₁ = 456 mL × 295 K / 359 k
V₁ = 134520 mL.K / 359 k
V₁ = 374.71 mL
Molarity is moles divided by liters so do .732 divided by .975 liters.
The mass in grams of butane at standard room temperature is 53.21 grams.
<h3>How can we determine the mass of an organic substance at room temperature?</h3>
The gram of an organic substance at room temperature can be determined by using the ideal gas equation which can be expressed as:
PV = nRT
- Pressure = 1.00 atm
- Volume = 22.4 L
- Rate = 0.0821 atm*L/mol*K
- Temperature = 25° C = 298 k
1 × 22.4 L = n × (0.0821 atm*L/mol*K× 298 K)
n = 22.4/24.4658 moles
n = 0.91556 moles
Recall that:
- number of moles = mass(in grams)/molar mass
mass of butane = 0.91556 moles × 58.12 g/mole
mass of butane = 53.21 grams
Learn more about calculating the mass of an organic substance here:
brainly.com/question/14686462
#SPJ12
Answer:
chemical and electrical ( and sometimes nucelar)
Explanation: