The protons and electrons are held in place on the x axis.
The proton is at x = -d and the electron is at x = +d. They are released at the same time and the only force that affects movement is the electrostatic force that is applied on both subatomic particles. According to Newton's third law, the force Fpe exerted on protons by the electron is opposite in magnitude and direction to the force Fep exerted on the electron by the proton. That is, Fpe = - Fep. According to Newton's second law, this equation can be written as
Mp * ap = -Me * ae
where Mp and Me are the masses, and ap and ae are the accelerations of the proton and the electron, respectively. Since the mass of the electron is much smaller than the mass of the proton, in order for the equation above to hold, the acceleration of the electron at that moment must be considerably larger than the acceleration of the proton at that moment. Since electrons have much greater acceleration than protons, they achieve a faster rate than protons and therefore first reach the origin.
The finished product or waste that forms as a result of a process is known as by-product.
Answer: A piston-filling fountain pen has a piston — just like in a car — inside the barrel. This piston goes down to expel air or ink and then back up, pulling ink into the barrel. The typical process is very simple, assuming the pen is clean and dry: Push the piston down, expelling any air in the barrel
Hello!
Let's begin by doing a summation of torques, placing the pivot point at the attachment point of the rod to the wall.

We have two torques acting on the rod:
- Force of gravity at the center of mass (d = 0.700 m)
- VERTICAL component of the tension at a distance of 'L' (L = 2.200 m)
Both of these act in opposite directions. Let's use the equation for torque:

Doing the summation using their respective lever arms:


Our unknown is 'theta' - the angle the string forms with the rod. Let's use right triangle trig to solve:

Now, let's solve for 'T'.

Plugging in the values:
