1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frosja888 [35]
3 years ago
15

Tutorial Exercise An unstable atomic nucleus of mass 1.83 10-26 kg initially at rest disintegrates into three particles. One of

the particles, of mass 5.03 10-27 kg, moves in the y direction with a speed of 6.00 106 m/s. Another particle, of mass 8.47 10-27 kg, moves in the x direction with a speed of 4.00 106 m/s. (a) Find the velocity of the third particle. (b) Find the total kinetic energy increase in the process
Physics
1 answer:
kogti [31]3 years ago
7 0

Answer:

A) v3 = -[6.29 × 10^(6)]j^ - [7.06 × 10^(6)]i^

B) K_total = 373.08 × 10^(-15) J

Explanation:

We are given;

Mass of unstable atomic nucleus; M = 1.83 × 10^(-26) kg

Mass of first particle; m1 = 5.03 × 10^(-27) kg

Speed of first particle in y-direction; v1 = (6 × 10^(6) m/s) j^

Mass of second particle; m2 = 8.47 × 10^(-27) kg

Speed of second particle in x - direction; v2 = (4 × 10^(6) m/s) i^

Now, we don't have the mass of the third particle but since we are told the unstable atomic nucleus disintegrates into 3 particles, thus;

M = m1 + m2 + m3

1.83 × 10^(-26) = (5.03 × 10^(-27)) + (8.47 × 10^(-27)) + m3

m3 = (1.83 × 10^(-26)) - (13.5 × 10^(-27))

m3 = 4.8 × 10^(-27) kg

A) Applying law of conservation of momentum, we have;

MV = (m1 × v1) + (m2 × v2) + (m3 × v3)

Now, the unstable atomic nucleus was at rest before disintegration, thus V = 0 m/s.

Thus, we now have;

0 = (m1 × v1) + (m2 × v2) + (m3 × v3)

We want to find the velocity of the third particle v3. Let's make it the subject of the formula;

v3 = [(m1 × v1) + (m2 × v2)]/(-m3)

Plugging in the relevant values, we have;

v3 = [(5.03 × 10^(-27) × 6 × 10^(6))j^ + (8.47 × 10^(-27) × 4 × 10^(6))i^]/(-4.8 × 10^(-27))

v3 = [(30.18 × 10^(-21))j^ + (33.88 × 10^(-21))i^]/(-4.8 × 10^(-27))

v3 = -[6.29 × 10^(6)]j^ - [7.06 × 10^(6)]i^

B) Formula for kinetic energy is;

K = ½mv²

Now,total kinetic energy is;

K_total = K1 + K2 + K3

K1 = ½ × 5.03 × 10^(-27) × (6 × 10^(6))²

K1 = 90.54 × 10^(-15) J

K2 = ½ × 8.47 × 10^(-27) × (4 × 10^(6))²

K2 = 67.76 × 10^(-15)

To find K3, let's first find the magnitude of v3 because it's still in vector form.

Thus;

v3 = √[(-6.29 × 10^(6))² + (-7.06 × 10^(6))²]

v3 = 9.46 × 10^(6) m/s

K3 = ½ × 4.8 × 10^(-27) × (9.46 × 10^(6))²

K3 = 214.78 × 10^(-15) J

K_total = (90.54 × 10^(-15)) + (67.76 × 10^(-15)) + (214.78 × 10^(-15))

K_total = 373.08 × 10^(-15) J

You might be interested in
1. A student lifts a box of books that weighs 185 N. The box is
aksik [14]

1)  148 J

When lifting an object, the work done on the object is equal to its change in gravitational potential energy. Mathematically:

W = \Delta U = (mg) \Delta h

where

mg is the weight of the object

\Delta h is the change in height

For the box in this problem,

mg = 185 N

\Delta h = 0.800 m

Substituting into the equation, we find:

W=(185)(0.800)=148 J

2) (a) 28875 J

The work done by a force applied parallel to the direction of motion of the object is given by

W=Fd

where

F is the magnitude of the force

d is the displacement

In this problem,

F = 825 N is the force applied by the two students together

d = 35 m is the displacement of the car

Substituting,

W=(825)(35)=28875 J

2) (b) 57750 J

As seen previously, the equation that gives the work done by the force is

W=Fd

We see that the work done is proportional to the magnitude of the force: therefore, if the force is doubled, then the work done is also doubled.

The work done previously was

W = 28875 J

Now the force is doubled, so the new work done will be

W' = 2(28875)=57750 J

3) 4.4 J

In this case, the force acting on the ball is the force of gravity, whose magnitude is:

F = mg

where

m = 0.180 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

Solving the equation,

F=(0.180)(9.8)=1.76 N

Now we find the work done by gravity using the same formula applied before:

W=Fd

where d = 2.5 m is the displacement of the ball. We can apply this version of the formula since the force is parallel to the displacement. Substituting,

W=(1.76)(2.5)=4.4 J

4) 595.2 kg

In this case, we have the work done on the box:

W = 7.0 kJ = 7000 J

And we also know the change in height of the box:

\Delta h = 1.2 m

As we stated in part a), the work done on the box is equal to its change in gravitational potential energy:

W=mg \Delta h

Solving for m, we find

m=\frac{W}{g \Delta h}

And substituting the numerical values, we find the mass of the box:

m=\frac{7000}{(9.8)(1.2)}=595.2 kg

5) They do the same work

In fact, the net work done by each person on the box is equal to the change in gravitational potential energy of the box:

W=mg \Delta h

Where \Delta h is the difference in height between the final position and the initial position of the box.

This means that the work done on the box depends only on its initial and final position, not on the path taken. The two men carry the box along different paths, however the reach at the end the same position, and they started from the same position: this means that the value of \Delta h is the same for both of them, so the work they have done is exactly the same.

5 0
3 years ago
Methods to reduce the frictional force between the an object and surface which it is in contact.
telo118 [61]
Use of lubricant
Use of ball bearers
Use of streamlined body
Use of graphite
7 0
3 years ago
PLEASE HELP ME
pogonyaev

Answer:

The answer is Insulator, Conductor

Explanation:

A/An Insulator is a material in which charges will not move easily, whereas a/an Conductor is a material that allows charges to move about easily

5 0
2 years ago
Which of the following is an example of a safe laboratory produced?
Step2247 [10]
I think you meant to say "procedure" instead of "produced". 

Choice B is the answer as it is the safest and most sensible (to prevent damage to clothing or start a fire for example). The other choices are nonsensical or silly. 
8 0
3 years ago
HELP PLZ!!<br> can the kinetic energy of an object be negative? explain
BARSIC [14]

Answer:

No it can not

Explanation: Kinetic energy is the energy of motion so it can not be negative the kinetic energy can only be at a point of "0" which is when its not moving. (I hope this helped) :))

7 0
2 years ago
Other questions:
  • A 500-kg roller coaster car travels with some initial velocity along a track that is 5 m above the ground. The car goes down a s
    8·1 answer
  • A ray of white light moves through the air and strikes the surface of water in a beaker. The index of refraction of the water is
    9·1 answer
  • Piaget used a pendulum apparatus to assess whether children had reached the _____ stage of cognitive development.
    14·1 answer
  • The part of the atom that carries no electric charge
    12·1 answer
  • Newton's law of universal gravitation is represented by f = g mm r2 where f is the gravitational force, m and m are masses, and
    7·1 answer
  • a surface recieving sound is moved from it original position to a position three times farther away from the source of the sound
    7·1 answer
  • Two pith balls hang side by side close to each other without touching as shown in the figure below. They are both neutral to beg
    13·1 answer
  • A person is straining to lift a large crate, without success because it is too heavy. We denote the forces on the crate as follo
    10·1 answer
  • How is work related to energy?​
    6·2 answers
  • A force of 6.0 Newtons is applied to a block at rest on a horizontal frictionless surface over a 7.0 meter span. How much energy
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!