Answer:
Explanation:
From the law of conservation of energy
Energy lost by the spring, W=Kinetic energy gained, KE+Potential energy gained, PE+Work done by friction, Fr
The required distance from A to B is
According to the article "Nuclear shapes" by Renee Lucas the nucleus's shape is mainly modified by vibrational and rotational features happening within the cell. According to the article if i read correctly "near closed shells spherical shapes prevail, while between closed shells the large number of valence nucleons in orbit with large particle angular momentum leads to nuclei with large deformations leading them to not only maintain its shape but also alloying it to work.
Answer:
Explanation: y’all taking the same test as me hahahahah I got the answers but I can’t attach the picture here so hit me up on snap daniela_0789
Answer:
890 N
Explanation:
Acceleration is change in velocity over change in time.
a = Δv / Δt
a = (11 m/s − 0 m/s) / 0.26 s
a = 42.3 m/s²
Force is mass times acceleration.
F = ma
F = (21 kg) (42.3 m/s²)
F ≈ 890 N
Answer: critical angle, sin^-1 (n2/n1)
Explanation: the angle of incidence at which the retracted ray makes an angle of 90° with the normal is known as the critical angle.
Snell's law defined refraction mathematically as shown below
n1 sin θi = n2 sin θr
n1 = refractive index of the first medium
n2 = refractive index of the second medium
θi = angle of incidence
θr = angle of refraction
When the refrafted ray is perpendicular to the normal, the angle of refraction (θr) is 90° hence making the angle of incidence (θi) the critical angle θc
By substituting these conditions into the Snell's law, we have that
n1 sin θc = n2 sin 90
According to trigonometry, the value of sin 90 is 1, hence we have that
n1 sin θc =n2
sin θc = n2/n1
θc = sin^-1 (n2/n1)