- Mass of the car (m) = 2000 Kg
- Initial velocity (u) = 15 m/s
- Force (F) = 10000 N
- Time (t) = 3 s
- Let the acceleration be a.
- By using the formula, F = ma, we get,
- 10000 N = 2000 Kg × a
- or, a = 10000 N ÷ 2000 Kg
- or, a = 5 m/s^2
- Let the final velocity be v.
- By using the formula, v = u + at, we get,
- v = 15 m/s + 5 m/s^2 × 3 s
- or, v = 15 m/s + 15 m/s
- or, v = 30 m/s
<u>Answer</u><u>:</u>
<em><u>The </u></em><em><u>new </u></em><em><u>sp</u></em><em><u>e</u></em><em><u>ed </u></em><em><u>of </u></em><em><u>the </u></em><em><u>car </u></em><em><u>is </u></em><em><u>3</u></em><em><u>0</u></em><em><u> </u></em><em><u>m/</u></em><em><u>s.</u></em>
Hope you could get an idea from here.
Doubt clarification - use comment section.
 
        
             
        
        
        
Answer:
(a) To draw water from a well we have to pull at the rope.
(b) A charged body attracts an uncharged body towards it.
(c) To move a loaded trolley we have to pull it.
(d) The north pole of a magnet repels the north pole of another magnet.
Explanation:
Just trust me
 
        
             
        
        
        
 Answer: The car has a kinetic energy (because it's in motion) of:  
Explanation:





 
        
             
        
        
        
Using lens equation;
1/o + 1/i = 1/f; where o = Object distance, i = image distance (normally negative), f = focal length (normally negative)
Substituting;
1/o + 1/-30 = 1/-43 => 1/o = -1/43 + 1/30 = 0.01 => o = 1/0.01 = 99.23 cm
Therefore, the object should be place 99.23 cm from the lens.
        
             
        
        
        
Saying english so we can help u