Answer:
b. less than w.
Explanation:
In this question, the application of length contraction is what helps us come to our conclusion. When an object moves very fast (relative to the observer), the length of the object seems to be smaller than it actually is (again, for the observer).
This is supported by the length contraction equation below:
L = 
Here, L is the observed length
is the original length of the object
v is the relative speed between the object and the observer
and c is the speed of light
Using this equation, we can see that as the speed between the object and the observer is increased to be close to that of light, the square root in the equation gives us values less than 1.0
This effectively decreases the length that is observed.
Weight = (mass) x (gravity)
On Earth ...
Weight = (1 kg) x (9.8 m/s^2)
Weight = 9.8 Newtons
Explanation:
We have,
Ajoba and Prav drive to work. Ajoba drives 45 miles in 2.5 hours. Prav drives 74 km in 1 hour 15 min.
1 mile = 1.6 km
45 miles = 72.42 km
74 miles = 119.0 km
1 hour 15 min means 1.25 hours
Average speed of Ajoba is :

Average speed of Prav,

Difference in average speed of Ajoba and Prav is :

So, the difference in average speed of Ajoba and Prav is 66.24 km/h.
Answer:
N = 6.67 N
Explanation:
The frictional or frictional force is a force that arises from the contact of two bodies and opposes movement.
The friction is due to imperfections and roughness, mainly microscopic, that exist on the surfaces of the bodies. Upon contact, these roughnesses engage with each other making movement difficult. To minimize the effect of friction, either the surfaces are polished or lubricated, since the oil fills the imperfections, preventing them from snagging.
As the frictional force depends on the materials and the force exerted on one another, its magnitude is obtained by the following expression:
f = μ*N Formula (1)
where:
f is the friction force (N)
μ is the coefficient of friction
N is the normal force (N)
Data
f = 0.2 N : frictional force between the steel spatula and the Oiled Steel frying pan
μ = 0.03 :coefficient of kinetic friction between the two materials
Calculating of normal force
We replace data in the formula (1)
f = μ*N
0.2 = 0.03*N
N = 0.2 / 0.03
N = 6.67 N