Answer:
0.438kg/ms-¹
Explanation:
Momentum, denoted by p, can be calculated by using the formula;
p = mv
Where;
m = mass (kg)
v = velocity (m/s)
Momentum (p) of bird = 0.216 kg × 5.87 m/s = 1.268kg/ms-¹
Momentum (p) of crawling baby = 7.29 kg kg × 0.234 m/s = 1.706kg/ms-¹
Having calculated the momentum of the bird to be 1.268kg/ms-¹, and the momentum of the baby to be 1.706kg/ms-¹, the difference in momentum between the flying bird and the crawling baby is:
{1.706kg/ms-¹ - 1.268kg/ms-¹} = 0.438kg/ms-¹
Answer:
1) Conduction
2)Covection
3)Radiation
4)Convection (Land breeze one of the application of convection of heat)
5) Convection
6)Radiation
7) Radiation
8)Conduction
9) Conduction
10) Radiation
Hope it helps
Answer: Yes, on many slate-roofed homes as temperatures change, such as cooling at night or heating during the day, thermal expansion or contraction of the slates may cause movement that in turn causes snapping, popping, or cracking noises, even bangs and clanks or clicks from the roof.
Explanation:
Answer:
a_total = 2 √ (α² + w⁴)
, a_total = 2,236 m
Explanation:
The total acceleration of a body, if we use the Pythagorean theorem is
a_total² = a_T²2 +
²
where
the centripetal acceleration is
a_{c} = v² / r = w r²
tangential acceleration
a_T = dv / dt
angular and linear acceleration are related
a_T = α r
we substitute in the first equation
a_total = √ [(α r)² + (w r² )²]
a_total = 2 √ (α² + w⁴)
Let's find the angular velocity for t = 2 s if we start from rest wo = 0
w = w₀ + α t
w = 0 + 1.0 2
w = 2.0rad / s
we substitute
a_total = r √(1² + 2²) = r √5
a_total = r 2,236
In order to finish the calculation we need the radius to point A, suppose that this point is at a distance of r = 1 m
a_total = 2,236 m