Answer: it is 5.5 mg
Explanation:
you have to multiply the mass value by 1000
<span>electron, I believe.
</span>
The activation energy of a reaction is the minimum energy that must be overcome in order for the reaction to take place. One way of reaching the activation energy is by manipulating the process conditions like pressure or temperature. But the most common method is by adding an enzyme. An enzyme speeds up the rate of the reaction but does not actively take part in it.
An analogy would be pushing heavy wooden block down a slope. No matter how many people push on it, the block won't move because of friction. But if you spill oil on the floor, the block would effortlessly move down the slope. The oil here is like an enzyme in a reaction.
453 divided by 224
density is roughly 2.02 g per ml
as a ml is 1 cm3 density is 2.02 grams per centimeter cubed
The balanced chemical reaction would be:
KHC8H4O4<span> (aq) + </span>NaOH<span> (aq) → NaKC8H4O4 (aq) + H2O.
The concentration of the NaOH is equal 0.1 M. We use this and the volume given above to determine the mass of KH</span>C8H4O4. We do as follows:
0.1 mol / L NaOH (.015 L) ( 1 mol KHC8H4O4 / 1 mol NaOH) (204 g / 1 mol) = 0.306 g KHC8H4O4