Answer:
Explanation:
Calculate the volume of the lead

Now calculate the bouyant force acting on the lead


This force will act in upward direction
Gravitational force on the lead due to its mass will act in downward direction
Hence the difference of this two force

If V is the volume submerged in the water then bouyant force on the bobber is

Equate bouyant force with the tension and gravitational force

Now Total volume of bobble is

=
All are true except the first two.
Answer:
the rigid outer part of the earth, consisting of the crust and upper mantle.
Explanation:
Answer:
The ball's initial kinetic energy
The ball comes to a stop at B. At this point its initial kinetic energy is converted into potential energy
Explanation:
A ball is fixed to the end of a string, which is attached to the ceiling at point P. As the drawing shows, the ball is projected downward at A with the launch speed v0. Traveling on a circular path, the ball comes to a halt at point B. What enables the ball to reach point B, which is above point A? Ignore friction and air resistance.
From conservation of energy which states that energy can neither be created nor be destroyed, but can be transformed from one form to another.
Ki+Ui=Kf+Uf
Ki=initial kinetic energy
Ui=initial potential energy
Kf=final kinetic energy
Uf=final potential energy
we know that 
m=mass of the ball
ha=downward height a
hb=upward height b
u=initial velocity u
v=final velocity v, which is 0
g=acceleration due to gravity
v=0 at final velocity
1/2mu^2+mgha=0+1/2mv^2
ha=hb+Ki/mh
From the above equation, we can conclude that the ball's initial kinetic energy is responsible for making the ball reach point B.
Point B is higher than point A from the motion gained by the ball