Answer:
The 1st and 4th options are correct
I.the oxidized form has a higher affinity for electrons
IV. the greater the tendency for the oxidized form to accept electrons
Explanation:
Half reaction can be described as the oxidation or reduction reaction in a redox reaction.it is In the redox rection there is a change in the oxidation states of Chemical species involved. the oxidized form in the redox has a higher affinity for electrons and the greater the tendency for the oxidized form to accept electrons.
Standard reduction potential which is also referred to as standard cell potential can be described as the potential difference that exist between cathode and anode of the cell. In the standard reduction potential most times the species will be reduced which is usually analysed in a reduction half reaction.
(Standard Hydrogen Electrode) is utilized when determining the Standard reduction or potentials of a chemical specie. this is because of Hydrogen having zero reduction and oxidation potentials, as a result of this a measured potential of any species is compared with that of Hydrogen, the difference helps to know the potential reduction of that particular specie.
I would say soil would be your best option. This is because out of all these, soil collects a lot of different substances and could have easily absorbed something that then killed the organism.
Answer: Amu is an atomic mass unit.
A variable is not consistent or having a fixed pattern; liable to change.
<h3><u>Answer</u>;</h3>
= 226 Liters of oxygen
<h3><u>Explanation</u>;</h3>
We use the equation;
LiClO4 (s) → 2O2 (g) + LiCl, to get the moles of oxygen;
Moles of LiClO4;
(500 g LiClO4) / (106.3916 g LiClO4/mol)
= 4.6996 moles
Moles of oxygen;
But, for every 1 mol LiClO4, two moles of O2 are produced;
= 9.3992 moles of Oxygen
V = nRT / P
= (9.3992 mol) x (8.3144621 L kPa/K mol) x (21 + 273) K / (101.5 kPa)
= 226 L of oxygen