1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erica [24]
3 years ago
5

Explain based on the HSAB concept ("hard and soft acids and bases") why NaCl is very soluble in water, where as AgCl is not.

Chemistry
1 answer:
Vesna [10]3 years ago
6 0

Answer:

Na⁺ tends to interact with the hardest base, which is water. Ag⁺ tends to interact with the softest (hardless) base, which is Cl⁻.

Explanation:

The HSAB concept says that hard acids are small ions with low electronegativity, while hard bases are electron donating groups with high electronegativity and low polarizability. The HSAB concept also says that hard acids will tend to react with hard bases. The opposite is valid for soft acids and soft bases.

Na⁺ is a hard acid

Ag ⁺ is a soft acid

Cl⁻ is a hard base

H₂O is a harder base than Cl⁻

Therefore, when in water, the Na⁺ tends to react with water, because it is a harder base than Cl⁻. However, as Ag⁺ is a soft acid, it will tend to stay with the less hard base, which is Cl⁻.

You might be interested in
What was Thomson's model of the atom called?
trasher [3.6K]
The answer is C: The plum-pudding model
3 0
3 years ago
The enzyme urease catalyzes the breakdown of urea in the body. Urease breaks urea down to 2NH3+CO2. This is an example of a hydr
Alika [10]

Answer:

Look at the picture.

Explanation:

On stage one binding of a substrate occurs (and also the geometry of active site may change) and water comes to the site. On stage two the hydrolisis takes place and on stage 3 products deabsorb from the enzyme.

8 0
3 years ago
PLEASE HELP I WILL GIVE YOU BRAINLIEST PLEASE
g100num [7]

Answer:

the answer is the second choice actual force

6 0
3 years ago
irvinase is an enzyme that has 4 cys residues tied up in 2 disulfide bonds. you denature irvinase with 8m urea in the presence o
Elena L [17]

Answer:

1. Quaternary structure of proteins relates to the interactions between separate polypeptide chains within the protein. The word polypeptide refers to a polymer of amino acids. A protein may contain one or more polypeptides and is folded and may be covalently modified.

2. Hemoglobin (and many other proteins) have multiple polypeptide subunits. Interactions between the subunits include ionic interactions, hydrogen bonds, and hydrophobic interactions. Modification of the quaternary structure of a protein may have the same effects as modification of its tertiary structure - alteration of its function/activity.

3. The enzyme ribonuclease (RNase) is interesting in being very stable to heat and other things that denature/inactivate other proteins. (By the way, denaturation is a word that means the tertiary and/or quaternary structure of a protein is disrupted.). RNase has disulfide bonds that help it to remain resistant to denaturation. Heating it to 100 Celsius, which denatures most proteins does not denature RNase. Breaking the disulfide bonds of RNAse with a reagent like mercaptoethanol followed by heating to 100 Celsius to destroy hydrogen bonds (or treatment with urea) causes loss of activity. If one allows the hydrogen bonds to reform slowly, some of the enzyme's activity reappears, which indicates that the information necessary for proper folding is contained in the primary structure (amino acid sequence).

4. Disulfide bonds are important structural components of proteins. They form when the sulfhydryls of two cysteines are brought together in close proximity. Some chemicals, such as mercaptoethanol, can reduce the disulfides (between cysteine residues) in proteins to sulfhydryls. In the process of transferring electrons to the cysteines, the sulfhydryls of mercaptoethanol become converted to disulfides. Treatment of RNase with mercaptoethanol reduces RNAse's disulfides to sulfhydryls. Subsequent treatment of RNase with urea disrupts hydrogen bonds and allows the protein to be denatured.

5. Interestingly, removal of the mercaptoethanol and urea from the solution allows RNase to refold, reestablish the correct disulfide bonds, and regain activity. Clearly, the primary sequence of this protein is sufficient for it to be able to refold itself to the proper configuration.

6. Other forces besides disulfide bonds that help to stabilize tertiary structure of proteins include hydrogen bonds, metallic bonds, ionic bonds, and hydrophobic bonds.

7. Chemicals that can disrupt some of these forces include urea or guanidinium chloride (disrupts hydrogen bonds), protons (ionic bonds), and detergents (hydrophobic bonds). In addition, dithiothreitol (DTT) can break disulfide bonds and make sulfhydryls.

8. Proteins sometimes have amino acids in them that are chemically modified. Chemical modification of amino acids in proteins almost always occurs AFTER the protein is synthesized (also described as post-translational modification). Examples include hydroxyproline and hydroxylysine in collagen, gamma carboxyglutamate, and phosphoserine. Modification of the collagen residues allows for the triple helical structure of the protein and for the strands to be cross-linked (an important structural consideration).

9. Hemoglobin (and many other proteins) have multiple polypeptide subunits. Interactions between the subunits include disulfide bonds, ionic interactions, hydrogen bonds, hydrophilic, and hydrophobic interactions. Modification of the quaternary structure of a protein may have the same effects as modification of its tertiary structure - alteration of its function/activity.

10. Folding is necessary for proteins to assume their proper shape and function. The instructions for folding are all contained in the sequence of amino acids, but we do not yet understand how those instructions are carried out rapidly and efficiently. Levinthal's paradox illustrates the fact that folding is not a random event, but rather based on an ordered sequence of events arising from the chemistry of each group.

11. Proper folding of a protein is essential. Cells have complexes called Chaperonins that help some proteins to fold properly. Misfolding of proteins is implicated in diseases such as mad cow disease and Creutzfeld-Jacob disease in humans. The causative agent in these diseases is a "contagious" protein that is coded by the genome of each organism. When it doesn't fold properly, it helps induce other copies of the same protein to misfold as well, resulting in plaque-like structures that destroy nerve cells.

Explanation:

8 0
3 years ago
Which criteria determine whether a heterogeneous mixture is a colloid or a suspension?
vivado [14]
Correct Answer: Option B: <span>whether the particles do not settle for an extended period of time

Reason:
Particle size in colloidal solution ranges from 1-100 nm, while that is suspension is more than 100 nm. Due to large particle size, particles in suspension settle down, upon standing for long. Thus, the best </span>criteria determine whether a heterogeneous mixture is a colloid or a suspension is to check <span>whether the particles do not settle for an extended period of time</span>
5 0
3 years ago
Read 2 more answers
Other questions:
  • You find a compound composed only of element "X" and hydrogen, and know that it is 91.26% element X by mass. Each molecule has 2
    13·2 answers
  • List the two main types of energy.
    6·1 answer
  • Is crushing a rock a chemical or physical change?
    7·1 answer
  • 1. A 25 g rock is placed in a graduated cylinder with water. The volume of the liquid rises from 18.3 mL to 21.4 mL Calculate th
    8·1 answer
  • Why do gasses condense when cooled
    5·1 answer
  • What would mix best with water?​
    6·2 answers
  • Calculate the molality of a 150% by mass solution of MgCl, FW-95.3 g/mol in H.O. The density of tis solution is 1.127 gim 0.0134
    12·1 answer
  • Benzophenone has a normal freezing point of +48.1 oC, with freezing point depression constant Kfpt = − 9.78 oC/m. A 0.1500 molal
    8·1 answer
  • UGH NO ONE IS HELPING MEEE
    12·1 answer
  • What are the smallest organelles in cell that are not enclosed in a membrance and they make protien
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!