This question is incomplete, the missing image in uploaded along this answer below.
Answer:
The required stress is 200 Mpa
Explanation:
Given the data in the question;
diameter D = 12 mm = 12 × 10⁻³ m
Length L = 188 mm = 188 × 10⁻³ m
Poisson's ratio v = 0.34
Reduction in diameter Δd = 0.0105 mm = 0.0105 × 10⁻³ m
The transverse strain will;
εˣ = Δd / D
εˣ = -0.0105 × 10⁻³ / 12 × 10⁻³ m
εˣ = -0.00088
The longitudinal strain will be;
= - ( εˣ / v )
= - ( -0.00088 / 0.34 )
= - ( - 0.002588 )
= 0.0026
Now, Using the values for strain, we get the value of stress from the graph provided in the question, ( first image uploaded below.
From the graph, in the Second image;
The stress is 200 Mpa
Therefore, The required stress is 200 Mpa
Answer:
50°
Explanation:
Complementary angles add up to 90°.
Supplementary angles add up to 180°.
Vertical angles are equal.
A + B = 90°
B = C
C = 180° − 140°
C = 40°
B = 40°
A = 50°
The Servant does not kill the child Oedipus as he was ordered to do because "He pitied the child" based on the Oedipus Rex story. The servant was ordered to kill the child because of the prophecy that predicted King Laius' death. The king already had attempted to hurt Oedipus by piercing Oedipus's ankle. However, the servant did not finish the job and he rather saved the baby Oedipus.
Answer:
c) Strain
Explanation:
For example, the shear strain “γ” on the surface of the rod is determined by measuring the relative angle of twist “φg” over a gage length “Lg”.
Answer:
a. 164 °F b. 91.11 °C c. 1439.54 kJ
Explanation:
a. [1 pts] How many degrees Fahrenheit (°F) must you raise the temperature?
Since the starting temperature is 48°F and the final temperature which water boils is 212°F, the number of degrees Fahrenheit we would need to raise the temperature is the difference between the final temperature and the initial temperature.
So, Δ°F = 212 °F - 48 °F = 164 °F
b. [2 pts] How many degrees Celsius (°C) must you raise the temperature?
To find the degree change in Celsius, we convert the initial and final temperature to Celsius.
°C = 5(°F - 32)/9
So, 48 °F in Celsius is
°C₁ = 5(48 - 32)/9
°C₁ = 5(16)/9
°C₁ = 80/9
°C₁ = 8.89 °C
Also, 212 °F in Celsius is
°C₂ = 5(212 - 32)/9
°C₂ = 5(180)/9
°C₂ = 5(20)
°C₂ = 100 °C
So, the number of degrees in Celsius you must raise the temperature is the temperature difference between the final and initial temperatures in Celsius.
So, Δ°C = °C₂ - °C₁ = 100 °C - 8.89 °C = 91.11 °C
c. [2 pts] How much energy is required to heat the four quarts of water from
48°F to 212°F (boiling)?
Since we require 15.8 kJ for every degree Celsius of temperature increase of the four quarts of water, that is 15.8 kJ/°C and it rises by 91.11 °C, then the amount of energy Q required is Q = amount of heat per temperature rise × temperature rise = 15.8 kJ/°C × 91.11 °C = 1439.54 kJ