Where the solubility product Ksp is applied where salts don't fully dissolve in a solvent.
and when the reaction equation is:
AB2(s) ↔ A2+(Aq) + 2 B-(aq)
so we have the Ksp expression = [A2+][B-]^2
when we assume [A2+] = X = 0.01 M
and [B-] = 2X = 2*0.01 M = 0.02 M
So by substitution:
Ksp = 0.01 * (0.02)^2
= 4 x 10^-6
When an electron passes through the magnetic field of a horseshoe magnet, the electron's direction is changed.
Path of an electron in a magnetic field
The force (F) on wire of length L carrying a current I in a magnetic field of strength B is given by the equation:
F = BIL
But Q = It and since Q = e for an electron and v = L/t you can show that :
Magnetic force on an electron = BIL = B[e/t][vt] = Bev where v is the electron velocity
In a magnetic field the force is always at right angles to the motion of the electron (Fleming's left hand rule) and so the resulting path of the electron is circular.
Therefore :
Magnetic force = Bev = mv2/r = centripetal force
v = [Ber]/m
and so you can see from these equations that as the electron slows down the radius of its orbit decreases.
If the electron enters the field at an angle to the field direction the resulting path of the electron (or indeed any charged particle) will be helical. Such motion occurs above the poles of the Earth where charges particles from the Sun spiral through the Earth's field to produce the aurorae.
To learn more about electron : brainly.com/question/860094
#SPJ4
Answer: B
Explanation: I had an even lengthier explanation but Brainly is being a butthead. But I got it right on my test for those who want to know.
Explanation:
Let us assume that the given data is as follows.
V = 3.10 L, T =
= (19 + 273)K = 292 K
P = 40 torr (1 atm = 760 torr)
So, P = 
= 0.053 atm
n = ?
According to the ideal gas equation, PV = nRT.
Putting the given values into the above equation to calculate the value of n as follows.
PV = nRT

0.1643 = 
n = 
It is known that molar mass of ethanol is 46 g/mol. Hence, calculate its mass as follows.
No. of moles =
mass =
g
= 0.315 g
Thus, we can conclude that the mass of liquid ethanol is 0.315 g.