Answer:
D
Explanation:
They are renewable energy sources
The temperature is gonna be
<u>Given:</u>
Mass of Ag = 1.67 g
Mass of Cl = 2.21 g
Heat evolved = 1.96 kJ
<u>To determine:</u>
The enthalpy of formation of AgCl(s)
<u>Explanation:</u>
The reaction is:
2Ag(s) + Cl2(g) → 2AgCl(s)
Calculate the moles of Ag and Cl from the given masses
Atomic mass of Ag = 108 g/mol
# moles of Ag = 1.67/108 = 0.0155 moles
Atomic mass of Cl = 35 g/mol
# moles of Cl = 2.21/35 = 0.0631 moles
Since moles of Ag << moles of Cl, silver is the limiting reagent.
Based on reaction stoichiometry: # moles of AgCl formed = 0.0155 moles
Enthalpy of formation of AgCl = 1.96 kJ/0.0155 moles = 126.5 kJ/mol
Ans: Formation enthalpy = 126.5 kJ/mol
Answer:
c, maybe d, and I think b.
Explanation:
Im sorry if wrong
Answer:
24x10³
Explanation:
2CO₂(g) + 4H₂O(g) → 2CH₃OH(l) + 3O₂ (g)
The equilibrium constant for this reaction is:
Kc = ![\frac{[O_2]^3}{[CO_2]^2[H_2O]^4}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BO_2%5D%5E3%7D%7B%5BCO_2%5D%5E2%5BH_2O%5D%5E4%7D)
The expression of [CH₃OH] is left out as it is a pure liquid.
Now we <u>convert the given masses of the relevant species into moles</u>, using their <em>respective molar masses</em>:
- CO₂ ⇒ 3.28 g ÷ 44 g/mol = 0.0745 mol CO₂
- H₂O ⇒ 3.86 g ÷ 18 g/mol = 0.214 mol H₂O
- O₂ ⇒ 2.80 g ÷ 32 g/mol = 0.0875 mol O₂
Then we calculate the concentrations:
- [CO₂] = 0.0745 mol / 7.5 L = 0.0099 M
- [H₂O] = 0.214 mol / 7.5 L = 0.0285 M
- [O₂] = 0.0875 mol / 7.5 L = 0.0117 M
Finally we <u>calculate Kc</u>:
- Kc =
= 24x10³